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Abstract—Analytical formula for the cross-spectral density matrix
of a twisted electromagnetic Gaussian Schell-model (TEGSM) beam
propagating through an astigmatic ABCD optical system in gain or
absorbing media is derived based on the unified theory of coherence
and polarization. Generalized tensor ABCD law in media is derived.
As an application example, the evolution properties of the degree of
polarization of a TEGSM beam in a Gaussian cavity filled with gain
media are studied numerically in detail. It is shown that the behavior
of the degree of polarization depends on the parameters of the gain
media and the TEGSM beam. Our results will be useful for the spatial
modulation of polarization properties of stochastic electromagnetic
beam.

1. INTRODUCTION

In the past decades, partially coherent beams have found important
applications in inertial confinement fusion, laser scanning, optical
imaging, free space optical communications, second harmonic
generation and optical trapping [1–9]. Gaussian Schell-model
(GSM) beam is a typical partially coherent beam whose spectral
degree of coherence and the intensity distribution are Gaussian
functions [1, 4, 10–12]. A more general partially coherent beam can
possess a twist phase, which differs in many respects from the
customary quadratic phase factor, and it exists only in partially
coherent beam [13, 14]. Simon and Mukunda first introduced the
twisted Gaussian Schell-model (TGSM) beam opening up “a new
dimension” in the area of partially coherent fields [13, 14]. Unlike the
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usual phase curvature, the twist phase is bounded in strength due to
the fact that the cross-spectral density function must be non-negative
definite. The twist phase has an intrinsic chiral or handedness property
and is responsible for the rotation of the beam spot on propagation [13–
15]. The twist phase is intrinsically two-dimensional, and it cannot
be separated into a sum of one-dimensional contributions [13–15].
Generation, propagation and application of a scalar GSM beam with or
without twist phase have been reported in [1–25]. Dependence of the
orbital angular momentum of a partially coherent beam on its twist
phase was revealed in Ref. [26]. More recently, the influence of the
twist phase on the second-harmonic generation by a partially coherent
beam has been investigated [8]. All results in previous literatures have
shown that the twist phase plays an important role in partially coherent
beam, thus it is necessary and of practical importance for studying
twist phase.

Recently, more and more attention is being paid to stochastic
electromagnetic beams [27–40]. Electromagnetic Gaussian Schell-
model (EGSM) beam was introduced as an extension of scalar GSM
beam [30, 31], which has important potential application in free-
space optical communication and radar system [32–34]. Numerous
theoretical and experimental papers have been published on EGSM
beams [27–40]. It is found that the EGSM beams with suitable
polarization properties may have reduced levels of scintillations
compared to the scalar GSM beams, which makes them attractive
for free-space optical communications [32]. More recently, Cai and
Korotkova introduced twisted electromagnetic Gaussian Schell-model
(TEGSM) beam [41]. The radiation forces induced by a focused
TEGSM beam on a Rayleigh dielectric sphere were investigated in [42],
and it is found that the trapping range can be increased at the
real focus by increasing the values of the twist factor and degree of
polarization. Spectral shift of a TEGSM beam focused by a thin lens
was examined in [43].

Polarization modulation becomes more and more important
because light beams with special polarization properties, such as
partially coherent and partially polarized light, radially or azimuthally
polarized light, have important applications in optical data storage,
particle trapping and acceleration, free-space optical communication,
high-resolution microscopy, laser cutting, and determination of single
fluorescent molecule orientation [29, 36, 44–50]. Usually there are two
ways for modulating the polarization and beam profile of light. The
first way is to put some optical elements such as aperture, zone
plate, thin lens and grating, on the optical axis outside the resonator.
Another way is to design some special optical resonators by choosing
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suitable resonator parameters and the parameters of the initial input
light. The modulation efficiency of the second way is much higher than
the first way, and most commercial instruments for modulation of light
are based on the second way. Thus it is useful to study the propagation
of light field in the resonator, and study the spatial modulation of
polarization by the resonator.

The theory of beam propagation in laser resonators was
formulated a long time ago for monochromatic scalar fields. In [51],
Fox and Li described the structure of modes of the monochromatic
fields in the resonator. Wolf, Agarwal, and Gori generalized the Fox-Li
theory to light fields with any state of coherence [52–54]. Palma and
coworkers then studied the behavior of the scalar partially coherent
beams in a Gaussian cavity [55, 56]. It is shown that we can modulate
the spectral and coherence properties of light by a Gaussian cavity
with suitable resonator parameters and the parameters of the initial
light. Up to now, only few works have been done on the behavior
of stochastic electromagnetic (i.e., vectorial) partially coherent beams
in a resonator [39, 40, 57–59]. To our knowledge no results have been
reported up until now on the properties of an EGSM beam with or
without twist phase in a resonator filled with gain media. Practical
resonators usually are filled with gain media, so it is necessary to take
the gain media in resonator into consideration, and study the spatial
modulation of polarization by such a resonator. In this paper, we first
derive the analytical formula for a TEGSM beam propagating through
a paraxial ABCD optical system in gain or absorbing media, then apply
it to study the polarization properties of a TEGSM beam in a Gaussian
cavity filled with gain media. Some numerical examples are given.

2. THEORY

Based on the unified theory of coherence and polarization, the second-
order statistical properties of the stochastic electromagnetic beam can
be characterized by the cross-spectral density matrix of the electric
field, defined by the formula [27–29]

↔
W (r1, r2) =

(
Wxx (r1, r2) Wxy (r1, r2)
Wyx (r1, r2) Wyy (r1, r2)

)
, (1)

with elements

Wαβ(r1, r2) = 〈E∗
α(r1)Eβ(r2)〉 (α = x, y; β = x, y). (2)

where Ex and Ey denote the components of the random electric
vector, with respect to two mutually orthogonal, x and y directions,
perpendicular to the z-axis. The “*” denotes the complex conjugate
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and the angular brackets denote ensemble average. For a TEGSM
beam, its element Wαβ(r1, r2) is expressed as [41]

Wαβ(r1, r2)=AαAβBαβ exp

[
− r2

1

4σ2
a

− r2
2

4σ2
β

− (r1−r2)
2

2δ2
αβ

− ik

2
γαβ (r1−r2)

TJ (r1+r2)

]
,

(α = x, y; β = x, y), (3)

where k = 2π/λ is the wave number in vacuum with λ being the
wavelength, Aα is the square root of the spectral density of electric
field component Eα, Bαβ = |Bαβ | exp(iφ) is the correlation coefficient
between the Ex and Ey field components and satisfy the relation
Bαβ = B∗

βα, σα is the r.m.s width of the spectral density along α
direction, δxx, δyy and δxy are the r.m.s widths of auto-correlation
functions of the x component of the field, of the y component of the
field and of the mutual correlation function of x and y field components,
respectively. The nine real parameters Ax, Ay, σx, σy, |Bxy|, φxy,
δxx, δyy and δxy entering the general model are shown to satisfy
several intrinsic constraints and obey some simplifying assumptions
(e.g., the phase difference between the x- and y-components of the
field is removable, i.e., φαα = 0) [31, 37]. γαβ represents the twist
factor and is limited by γ2

αβ ≤ 1/(k2δ4
αβ) if α = β due to the non-

negativity requirement of the cross-spectral density [14, 41]. J is an
anti-symmetric matrix, i.e.,

J =
(

0 1
−1 0

)
. (4)

Under the condition of γαβ = 0, Eq. (3) reduces to the expression for
element of an electromagnetic GSM beam without twist phase [30, 31].

After some arrangement, Eq. (3) can be expressed in following
alternative tensor form

Wαβ (r̃) = AαAβBαβ exp
[
−r̃TM−1

0αβ r̃
]
, (α = x, y; β = x, y) (5)

where r̃T = (rT
1 rT

2 ) = (x1, y1, x2, y2), and
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

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− 1
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I


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, (6)

where I is the 2 × 2 identity matrix. It should be noted that
the expression of Eq. (5) is slightly different from that used in [41]
because we have moved the factor ik/2 into the matrix M−1

0αβ for the
convenience of integration as shown later.
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Within the validity of the paraxial approximation, the propagation
of the cross-spectral density of a partially coherent beam through a
general astigmatic ABCD optical system in gain or absorbing media
can be studied by following generalized Collins formula [18, 60, 61]

Wαβ (ρ1, ρ2) =
|K|2

4π2 [det (B)]1/2 [det (B∗)]1/2
exp (2Kiz)

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Wαβ (r1, r2)

exp
[
− iK

2
(
rT
1 B−1Ar1 − 2rT

1 B−1ρ1 + ρT
1 DB−1ρ1

)]

× exp
[
− iK∗

2

(
rT
1

(
B−1

)∗A∗r1 − 2rT
1

(
B−1

)∗
ρ2

+ρT
2 D∗ (

B−1
)∗

ρ2

)]
dr1dr2, (7)

where dr1dr2 = dx1dy1dx2dy2, A, B, C and D are the sub-matrices of
the general astigmatic optical system and they satisfy following famous
Luneburg relations [62] that describe the symplecticity of the axially
astigmatic optical system(

B−1A
)T=B−1A,

(−B−1
)T=

(
C−DB−1A

)
,

(
DB−1

)T=DB−1. (8)
K = Kr + iKi is the wave number in the medium, Kr and Ki are the
real and the imaginary parts of K. Kr = nk with n being the refractive
index. the media is called gain media if Ki > 0 and absorbing media
if Ki < 0.

After some operation, Eq. (7) can be expressed in following
alternative tensor form

Wαβ (ρ̃) =
exp (2Kiz)

π2
[
Det

(
B̃

)]1/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Wαβ (r̃)

× exp
[
−

(
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−1
ρ̃
)]

dr̃, (9)

where Det stands for the determinant of a matrix, ρ̃T = (ρT
1 ρT

2 ) =
(ρ1x, ρ1y, ρ2x, ρ2y), Ã, B̃, C̃ and D̃ are defined as follows
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)
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. (10)
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and they also satisfy following Luneburg relations
(
B̃−1Ã

)T
=B̃−1Ã,

(
−B̃−1

)T
=

(
C̃−D̃B̃

−1
Ã

)
,

(
D̃B̃

−1
)T
= D̃B̃

−1
. (11)

Substituting Eq. (5) into Eq. (9), we obtain (after some vector
integration and operation)

Wαβ (ρ̃) = AαAβBαβ
exp (2Kiz)

[
Det

(
Ã+B̃M

−1
0αβ

)]1/2
exp

[
−ρ̃TM−1

1αβρ
]
, (12)

with
M−1

1αβ =
(
C̃ + D̃M

−1
0αβ

)(
Ã + B̃M

−1
0αβ

)−1
, (13)

In the above derivation, we have used Eq. (11) and following integral
formula ∫ ∞

−∞
exp

(−ax2
)
dx =

√
π/a, (14)

Equation (12) is the analytical formula for a TEGSM beam
propagating through a general astigmatic ABCD optical system in gain
or absorbing media. We call Eq. (13) the generalized tensor ABCD law
for a partially coherent beam in gain or absorbing media. Eqs. (12)
and (13) can be used conveniently to study the propagation properties
of scalar and electromagnetic GSM beams with or without twist phase
through an optical system in gain or absorbing media.

3. NUMERICAL RESULTS

In this section, we study the evolution properties of the degree of
polarization of a TEGSM beam in a Gaussian cavity filled with gain
media as an application example of the formulae derived in above
section.

The Gaussian cavity consists of two spherical mirrors each with
radius of curvature R and gaussian reflectivity profile with radius ε,
and is equivalent to a sequence of identical thin spherical lenses with
focal length f = R/2, followed by the amplitude filters with a Gaussian
transmission function for the equivalent (unfolded) optical system (see
Fig. 1 of Ref. [56]). The distance between each lens-filter pair is equal to
L, and the space between each lens-filter pair is filled with gain media
in our case. By applying the ABCD-matrix approach for a Gaussian
aperture, we find that after the TEGSM beam travels between two
mirrors for N times, A, B, C and D for the equivalent optical system
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become
(
A B
C D

)
=
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

I L · I(
− 2

R
− i
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πε2

)
I

(
1− 2L

R
− i
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πε2

)
I




N

, (15)

where ε is the mirror spot size of the cavity. depending on the value
of the stability parameter g = 1−L/R, the resonators are classified as
stable 0 ≤ g < 1 or unstable g > 1.

For the convenience of analysis, we assume that originally the
beam in the resonator was produced by a TEGSM source whose cross-
spectral density matrix is diagonal, i.e., of the form

↔
W(r1, r2) =

(
Wxx(r1, r2) 0

0 Wyy(r1, r2)

)
. (16)

The degree of polarization of the beam at point r can be expressed as
follows [27–29]

P (r) =

√√√√1− 4Det
↔
W(r, r)

[Tr
↔
W(r, r)]2

. (17)

In the following numerical examples, we set Ax = 1, Ay = 0.707,
Bxx = Byy = 1, σx = σy = 1 mm, L = 350 mm, λ = 632.8 nm. In this
case, the polarization properties are uniform across the source plane
with P (r) = 0.333.

Now we study numerically the behavior of the degree of
polarization of a TEGSM beam in a Gaussian cavity filled with gain
media by using above derived equations. We calculated in Fig. 1
the on-axis degree of polarization versus N for different values of
cavity parameter g and the refractive index n of the gain media
with δxx = 0.15mm, δyy = 0.1mm, Ki = 2 × 10−6, ε = 0.8mm,
γxx = 1.5× 10−5 mm−1, γyy = 1× 10−5 mm−1. For the convenience of
comparison, the corresponding result in a Gaussian cavity without gain
media (n = 1.0, Ki = 0) is also plotted in Fig. 1. One finds from Fig. 1
that the evolution properties of the on-axis degree of polarization of a
TEGSM beam are closely determined by the cavity parameter g and
the refractive index n of the gain media. In a Gaussian cavity with gain
media (n > 1), the degree of polarization increases as N increases, and
its value approaches different constant values for different resonators
when N is enough large. In stable resonators (0 ≤ g < 1), the degree
of polarization exhibits growth with oscillations but asymptotically
saturates when N is large enough, while growth is monotonic for
unstable resonators (g > 1). This behavior is similar to that in a
Gaussian cavity without gain media (n = 1, Ki = 0). Furthermore,
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one finds from Fig. 1 that the degree of polarization decreases as the
refractive index n of the gain media takes larger value, both in stable
and unstable resonators. In Fig. 2, we calculate the on-axis degree of
polarization versus N for different values of correlation factors (δxx,
δyy) of the TEGSM beam and the refractive index n of the gain media
with g = 1, Ki = 2 × 10−6, ε = 0.8mm, γxx = 1.5 × 10−5 mm−1,
γyy = 1 × 10−5 mm−1. One finds from Fig. 2 that the degree of
polarization decreases as the correlation factors (δxx, δyy) take larger
values, both in stable and unstable resonators with or without gain
media. What’s more, the relative difference between the degree of
polarization in resonator with gain and that in resonator without gain
media decreases as the initial values of the correlation factors (δxx, δyy)
of the TEGSM beam decrease.

In Fig. 3, we calculate the on-axis degree of polarization versus N
for different values of cavity parameter g and Ki (i.e., the imaginary
part of K) of the gain media with δxx = 0.15mm, δyy = 0.1mm,
n = 1.5, ε = 0.8mm, γxx = 1.5 × 10−5 mm−1, γyy = 1 × 10−5 mm−1.
In Fig. 4, we calculate the on-axis degree of polarization versus N
for different values of correlation factors (δxx, δyy) of the TEGSM
beam and Ki of the gain media with g = 1, n = 1.5, ε = 0.8mm,
γxx = 1.5 × 10−5 mm−1, γyy = 1 × 10−5 mm−1. As shown by Fig. 3,
the evolution properties of the TEGSM beam is also affected by the
Ki of the gain media both in stable and unstable resonators. When N

Figure 1. On-axis degree of polarization versus N for different values
of cavity parameter g and the refractive index n of the gain media.
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Figure 2. On-axis degree of polarization versus N for different values
of correlation factors (δxx, δyy) of the TEGSM beam and the refractive
index n of the gain media.

Figure 3. On-axis degree of polarization versus N for different values
of cavity parameter g and Ki (i.e., the imaginary part of K) of the
gain media.
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is small (N ≤ 5), the effect of Ki on the on-axis degree of polarization
is very small and is negligible. For a larger N (N > 5), the effect of
Ki becomes strong and can’t be neglected, the degree of polarization
increases as the value of Ki increases. From Fig. 4, it is clear that
the relative difference between the on-axis degree of polarization in
resonator with larger Ki and that in resonator with smaller Ki becomes
small as the correlation factors (δxx, δyy) of the TEGSM beam decrease.
From above discussion, one comes to the conclusion that the real part
of K of the gain media impedes the growth of the on-axis degree of
polarization on propagation, while the imaginary part of K enhances
the growth of the degree of polarization, and the effect of the gain
media on the degree of polarization decreases as the correlation factors
(δxx, δyy) of the TEGSM beam decrease.

To learn about effect of the twist phase of the TEGSM beam on the
evolution properties of the on-axis degree of polarization, we calculate
in Fig. 5 the on-axis degree of polarization versus N for different values
of cavity parameter g and twist factors of the TEGSM beam with
δxx = 0.15 mm, δyy = 0.1mm, n = 1.5, ε = 0.8mm, Ki = 2× 10−6. It
is clear from Fig. 5 that the twist phase has significant influence on the
degree of polarization in resonator. The on-axis degree of polarization
decreases as the absolute values of the twist factors increase both in
stable and unstable resonators.

Figure 4. On-axis degree of polarization versus N for different values
of correlation factors (δxx, δyy) of the TEGSM beam and Ki of the
gain media.
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Figure 5. On-axis degree of polarization versus N for different values
of cavity parameter g and twist factors of the TEGSM beam.

Figure 6. Degree of polarization versus a transverse dimension x for a
fixed number of passes N = 20 for (a) different values of the refractive
index n with Ki = 3×10−6 and (b) different values of Ki with n = 1.5.

For all the figures above, the evolution of the polarization
properties of the beam were shown only on axis. Fig. 6 illustrates
the behavior of the degree of polarization in a transverse plane for
a fixed number of passes N = 20 for different values of the real
and the imaginary parts of K with δxx = 0.3mm, δyy = 0.2mm,
γxx = 1.5×10−5 mm−1, γyy = 1×10−5 mm−1, ε = 0.8 mm and g = 1. It
can be readily deduced from Fig. 6 that the initial uniformly polarized
TEGSM beam becomes nonuniformly polarized after propagation in
the resonator. The degree of polarization of the off-axis point first
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Figure 7. Degree of polarization versus a transverse dimension x for a
fixed number of passes N = 20 for different values of the twist factors
of TEGSM beam.

decreases with the increase of the transverse coordinate x, then rises
gradually towards the edges of the off-axis regions. As the refractive
index n increases, the degree of polarization of the off-axis points near
the on-axis point decreases, but the degree of polarization of the off-
axis points far away from the on-axis point increases. As Ki increases,
the degree of polarization of the on-axis point and some off-axis
points increase, while the degree of polarization of some off-axis points
decrease. Fig. 7 shows the behavior of the degree of polarization in a
transverse plane for a fixed number of passes N = 20 for different values
of the twist factors of the TEGSM beam with n = 1.5, Ki = 2× 10−6,
δxx = 0.3mm, δyy = 0.2mm, ε = 0.8mm and g = 1. One finds
from Fig. 7 that the degree of polarization of on-axis or off-axis point
decreases as the absolute values of the twist factors increase. So it is
necessary to take the twist phase of a stochastic electromagnetic beam
into consideration in practical case.

4. CONCLUSION

With the help of a tensor method, we have derived the analytical
propagation formula of a TEGSM beam through an astigmatic ABCD
optical system in gain or absorbing media. We have studied the
evolution properties of the degree of polarization of a TEGSM beam
in a Gaussian cavity filled with gain media as numerical examples.
We have found that the polarization properties of a TEGSM beam
are closely determined by its twist phase, correlation factors, and the
parameters of gain media in cavity, thus we can control the polarization
properties of a stochastic electromagnetic beam by choosing suitable
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initial beam parameters and cavity parameters. Our results will be
useful for the spatial modulation of polarization properties of stochastic
electromagnetic beam.
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intensity and spreading of partially coherent standard and elegant
Laguerre-Gaussian beams in turbulent atmosphere,” Progress In
Electromagnetics Research, PIER 103, 33–56, 2010.

5. Cai, Y. and S. Zhu, “Ghost imaging with incoherent and partially
coherent light radiation,” Phys. Rev. E, Vol. 71, No. 5, 056607,
2005.

6. Cai, Y. and S. Zhu, “Ghost interference with partially coherent
radiation,” Opt. Lett., Vol. 229, No. 23, 2716–2718, 2004.

7. Cai, Y. and S. He, “Propagation of a partially coherent
twisted anisotropic Gaussian Schell-model beam in a turbulent
atmosphere,” Appl. Phys. Lett., Vol. 89, No. 4, 041117, 2006.

8. Cai, Y. and U. Peschel, “Second-harmonic generation by an
astigmatic partially coherent beam,” Opt. Express, Vol. 15, No. 23,
15480–15492, 2007.

9. Zhao, C., Y. Cai, X. Lu, and H. T. Eyyuboǧlu, “Radiation force of
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