Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-07
Bistatic Scattering from Two-Dimensional Dielectric Ocean Rough Surface with a PEC Object Partially Embedded by Using the g -Smcg Method
By
Progress In Electromagnetics Research, Vol. 105, 119-139, 2010
Abstract
An efficient approach called general sparse matrix canonical grid (G-SMCG) method is proposed to analyze the electromagnetic scattering from 2-D dielectric rough surface with a conducting object partially buried. In this paper, the scattering of 3-D arbitrarily shaped object is computed by using the traditional method of moments (MoM)with RWG basis function, and the scattering of rough surface is analyzed by using the SMCG method. The coupling interactions between an object and rough surface are calculated by iterative method. Combing the ocean rough surface with Pierson Moskowitz (PM) spectrum, the bistatic scattering coefficients of typical objects buried in the ocean surface have been computed by using the proposed method. Then the accuracy and efficiency of this method are discussed. Finally, the bistatic scattering coefficients of a ship located on ocean surface are calculated, and the influence of sea state and wind direction on the scattering coefficients is indicated.
Citation
Wei-Jie Ji, and Chuang-Ming Tong, "Bistatic Scattering from Two-Dimensional Dielectric Ocean Rough Surface with a PEC Object Partially Embedded by Using the g -Smcg Method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101
References

1. Ye, H. X. and Y. Q. Jin, "Fast iterative approach to difference scattering from the target above a rough surface," IEEE Trans. on Geoscience and Remote Sensing, Vol. 44, No. 1, 108-115, 2006.
doi:10.1109/TGRS.2005.859955

2. Firoozabadi, R., E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, "Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data ," IEEE Trans. on Geoscience and Remote Sensing, Vol. 45, No. 1, 104-117, 2007.
doi:10.1109/TGRS.2006.883462

3. Geng, N., M. A. Ressler, and L. Carin, "Wide-band VHF scattering from a trihedral reflector situated above a lossy dispersive halfspace," IEEE Trans. on Geoscience and Remote Sensing, Vol. 27, No. 9, 2609-2617, 1999.
doi:10.1109/36.789655

4. Johnson, J. T., "A study of the four-path model for scattering from an object above a halfspace," Microw. Opt. Technol. Lett., Vol. 30, No. 7, 130-134, 2001.
doi:10.1002/mop.1242

5. Ye, H. X. and Y. Q. Jin, "A hybrid analytical-numerical algorithm for scattering from a 3-D target above a randomly rough surface," Chin. Phys., Vol. 57, No. 2, 839-846, 2008.

6. Kuang, L. and Y. Q. Jin, "Bistatic scattering from a threedimensional object over a randomly rough surface using the FDTD algorithm," IEEE Trans. Antennas Propagat., Vol. 55, No. 8, 1368-1376, 2007.
doi:10.1109/TAP.2007.901846

7. El-Shenawee, M., "The multiple interaction model for non-shallow scatterers buried beneath two-dimensional random rough surfaces ," IEEE Trans. on Geoscience and Remote Sensing, Vol. 40, No. 4, 982-987, 2002.
doi:10.1109/TGRS.2002.1006396

8. Liu, Z. J., J. Q. He, Y. J. Xie, A. Sullivan, and L. Carin, "Multilevel fast multipole algorithm for general targets on a half-space interface," IEEE Trans. Antennas Propagat., Vol. 50, No. 12, 1838-1849, 2002.
doi:10.1109/TAP.2002.807425

9. Guan, B., J. F. Zhang, X. Y. Zhou, and T. J. Cui, "Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green's function," IEEE. Trans. on Geoscience and Remote Sensing, Vol. 47, No. 10, 3399-3405, 2009.
doi:10.1109/TGRS.2009.2022169

10. Lawrence, D. E. and K. Sarabandi, "Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1368-1376, 2002.
doi:10.1109/TAP.2002.802160

11. Chiu, T. and K. Scarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface," IEEE Trans. Antennas Propagat., Vol. 47, No. 5, 902-913, 1999.
doi:10.1109/8.774155

12. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hubrid SPM/MOM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506

13. Wang, X., X. Luo, Z. Zhang, and J. Fu, "The study of an electromagnetic scattering model for two adjacent trunks above a rough surface ground plane," Microw. Opt. Technol. Lett., Vol. 20, No. 6, 369-376, 1999.
doi:10.1002/(SICI)1098-2760(19990320)20:6<369::AID-MOP6>3.0.CO;2-Z

14. Wang, Y. H., Y. M. Zhang, and L. X. Guo, "Investigation of the scattered ¯eld from a two-dimensional dielectric target above the planar surface with a Guass beam incidence ," Acta Phys., Vol. 57, No. 9, 5529-5536, 2008.

15. Wang, X., C.-F. Wang, Y.-B. Gan, and L.-W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

16. Wang, X., Y. B. Gan, and L. W. Li, "Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 219-322, 2003.

17. Wang, X. and L.-W. Li, "Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001

18. Wang, X., Y.-B. Gan, and L.-W. Li, "TE scattering from pec object partially embedded at dielectric rtough surface interface," The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves, 2004. MSMW 04, Vol. 1, 10-26, Kharkov, Ukraine, 2004.

19. Pino, M. P., L. Landesa, J. L. Rodrfguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surface," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 961-969, 1999.
doi:10.1109/8.777118

20. Li, Z. X., "Bistatic scattering from rough dielectric soil surface with a conducting object partially buried by using the GFBM/SAA method," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 2072-2080, 2006.
doi:10.1109/TAP.2006.877187

21. Li, Q., L. Tsang, K. S. Pak, and C. H. Chan, "Bistatic scattering and emissivities of random rough dielectric lossy surfaces with the physics-based two-grid method in conjunction with the sparse-matrix canonical grid method," IEEE Trans. Antennas Propagat., Vol. 48, No. 1, 1-11, 2000.
doi:10.1109/8.827379

22. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Numerical Simulations, New York, 2000.

23. Du, Y., Y. L. Luo, and J. A. Kong, "Electromagnetic scattering from randomly rough surfaces using the stochastic second-degree method and the sparse Matrix/Canonical grid algorithm," IEEE Trans. Geoscience Remote Sensing, Vol. 46, No. 10, 2831-2839, 2008.
doi:10.1109/TGRS.2008.921211

24. B. E., O. A. Chi, F. L. Teixeira, and J. A. Kong, "Sparse Matrix/Canonical grid method applied to 3-D dense medium simulations," IEEE Trans. Antennas Propagat., Vol. 51, No. 1, 48-58, 2003.
doi:10.1109/TAP.2003.809094

25. Huang, C. C., L. Tsang, C. H. Chan, and K. H. Ding, "Multiple scattering among vias in planar waveguides using preconditioned SMCG method ," IEEE Trans. Microwave Theory Techniques, Vol. 52, No. 1, 20-28, 2004.
doi:10.1109/TMTT.2003.821229

26. Rao, S. M., D. R. Wlton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 32, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

27. ToPorkov, J. V., G. S., and Brown, "Numerieal simulations of scattering from time-varyingrandomly rough surfaees," IEEE Trans. Geoscience Remote Sensing, Vol. 38, No. 4, 1616-1625, 2000.
doi:10.1109/36.851961