Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-23
Effective Plasma Frequency for Two- Dimensional Metallic Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 12, 67-79, 2010
Abstract
Generalized band structure equation for photonic crystals which containing dielectric rods in metals medium was derived by using the plane wave expansion method. From the band structure, we can study band gap of photonic crystals in both E and H polarizations. Since metals are frequency-dependant materials, modification needs to be done on the plane wave expansion equation to calculate the metallic photonic crystals containing dielectric constant rods. To ease the calculation, simple Drude model for metals are used. In this model, the equation is without damping constant. We have plotted the band structure for photonic crystals in metals medium. Then, we studied the ffective plasma frequency of the structure from the band graph in E polarization mode (TM). We found that effective plasma frequency can be tailored as we want. Detailed results are presented with different sizes of radius. Comparison is made for different background materials.
Citation
Khee Lam Low, Mohd Zubir Mat Jafri, and Sohail A. Khan, "Effective Plasma Frequency for Two- Dimensional Metallic Photonic Crystals," Progress In Electromagnetics Research M, Vol. 12, 67-79, 2010.
doi:10.2528/PIERM10031505
References

1. Parui, S. K. and S. Das, "A simple electromagnetic bandgap structure for microstrip line," Proceedings of the IEEE First India Annual Conference, INDICON, 2004.

2. Chutinan, A., N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Optics Express, Vol. 17, 8, 2009.
doi:10.1364/OE.17.008871

3. Haase, C. and H. Stiebig, "Light trapping in thin-film silicon solar cells with periodic structures," Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 1509-1512, 2006.

4. Guenneu, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

5. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

6. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.
doi:10.2528/PIER02010808

7. Kuzmiak, V. and A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Physical Review B, Vol. 58, 22, 1998.
doi:10.1103/PhysRevB.58.7230

8. Pendry, J. B., "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4, 1996.
doi:10.1103/PhysRevLett.76.4773

9. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Physical Review B, Vol. 75, 7, 2007.
doi:10.1103/PhysRevB.75.035102

10. Hermann, D., M. Frank, K. Busch, and P. Wolfle, "Photonic band structure computations," Optics Express, Vol. 8, Jan. 29, 2001.

11. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Physical Review B, Vol. 44, 7, 1991.
doi:10.1103/PhysRevB.44.8565

12. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components ," Physical Review B, Vol. 50, 10, 1994.
doi:10.1103/PhysRevB.50.16835

13. Zhou, Y.-S., B.-Y. Gu, and F.-H. Wang, "Photonic band gap structures and guide modes in two-dimensional magnetic photonic crystal heterostructures," European Physics Journal B, Vol. 37, 7, 2004.

14. Guo, S. and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Optics Express, Vol. 11, 9, Jan. 27, 2003.

15. Rambabu, K., M. Mokhtaari, and J. Borneman, "Simplified computation of electromagnetic band-gap properties of via-holed metal patches," IEEE International Symposium on Electromagnetic Compatibility, EMC, 2007.

16. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

17. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap study using plane wave expansion method for metallic slab with air rods in E polarizing mode," Chinese Journal of Physics, Vol. 47, 10, 2009.

18. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dieletric photonic crystals," Applied Physics Letters, Vol. 86, 3, 2005.

19. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Physical Review B, Vol. 55, 18, 1997.

20. Sakoda, K., Optical Properties of Photonic Crystals, 2005.