Vol. 16
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-09
Numerical Simulation of Magnetron Injection Gun for 1mw 120 GHz Gyrotron
By
Progress In Electromagnetics Research Letters, Vol. 16, 21-34, 2010
Abstract
A 40 A triode type magnetron injection gun for a 1 MW, 120 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. Computer simulation has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating voltages of the modulating anode and the accelerating anode are 60 kV and 80 kV, respectively. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread (δβ⊥max = 3.3%) and velocity ratio, α = 1.38 at beam current = 40 A is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results obtained from both the codes are in good agreement. The sensitivity study has been carried out by changing the different gun parameters to decide the fabrication tolerance.
Citation
Udaybir Singh, Nitin Kumar, Narendra Kumar, Sakshi Tandon, Hasina Khatun, L. P. Purohit, and Ashok Kumar Sinha, "Numerical Simulation of Magnetron Injection Gun for 1mw 120 GHz Gyrotron," Progress In Electromagnetics Research Letters, Vol. 16, 21-34, 2010.
doi:10.2528/PIERL10031503
References

1. Thumm, M., "High power gyro-devices for plasma heating and other applications," Int. J. Infrared Millim. Waves, Vol. 26, 483-503, Apr. 2005.
doi:10.1007/s10762-005-4068-8

2. Dammertz, G., et al., "Development of multimegawatt gyrotrons for fusion plasma heating and current drive," IEEE Trans. Plasma Sci., Vol. 52, No. 25, 808-817, May 2005.

3. Thumm, M., "State-of-the-art of high power gyro-devices and free electron masers update 2006,", Scientific Report FZKA 7289, Forschungszentrum Karlsruhe, Karlsruhe, Germany, Feb. 2007.

4. Flyagin, V. A., A. V. Gaponov, I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. Microwave Theory Tech., Vol. 25, No. 6, 514-521, 1977.
doi:10.1109/TMTT.1977.1129149

5. Gyrotron Oscillators: Their Principles and Practice, Edgcombe, C. J., Ed., Taylor & Francis, 1993.

6. Kartikeyan, M. V., E. Borie, and M. Thumm, Gyrotrons High-Power Microwave and Millimeter Wave Technology, Springer, 2004.

7. Nusinovich, G. S., Introduction to the Physics of Gyrotrons, Johns Hopkins University Press, 2004.

8. Goldenberg, A. L. and M. I. Petelin, "The formation of helical electron beams in an adiabatic gun," Izv. VUzov. Radiofizika, Vol. 16, 141-149, 1973.

9. Krivosheev, P. V., V. K. Lygin, V. N. Manuilov, and S. E. Tsimring, "Numerical simulation models of forming systems of intense gyrotron helical electron beams," Int. J. of Infrared and millimeter Waves, Vol. 22, 1119-1146, 2001.
doi:10.1023/A:1015006230396

10. Tsimring, S. E., "Gyrotron electron beams: Velocity and energy spread and beam instabilities," Int. J. of Infrared and millimeter Waves, Vol. 22, 1433-1468, 2001.
doi:10.1023/A:1015034506088

11. Choi, E. M., C. Marchewka, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, "Megawatt power level 120 GHz gyrotrons for ITER start-up," Journal of Physics: Conference Series, Vol. 25, 1-7, 2005.
doi:10.1088/1742-6596/25/1/001

12. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 953-967, 1986.
doi:10.1080/00207218608920932

13. Lawson, W., "MIG scaling," IEEE Trans. Plasma Science, Vol. 16, No. 2, 290-295, 1988.
doi:10.1109/27.3827

14. Udaybir, S., A. Bera, R. R. Rao, and A. K. Sinha, "Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron," J. of Infrared, Millimeter, and Terahertz Waves, 1886-6906, Dec. 2009 [online].

15. Hermannsfeldt, W. B., EGUN, Stanford Linear Accelerator Center, Stanford University Report SLAC-226, 1979.

16. Bera, A., S. Udaybir, R. R. Rao, and A. K. Sinha, "Design of MIG for 42 GHz, 200kW Gyrotron," IEEE IVEC-2008, Monterey, USA, 2008.

17. Udaybir, S., A. Bera, N. Kumar, and A. K. Sinha, "Numerical simulation of MIG for 200 kW, 42 GHz gyrotron," Int. J. of Infrared and millimeter Waves, Jan. 2010 [online].

18. TRAK 6.0, Finite-element Charged-particle Optics, Albuquerque, New Mexico 87192, U.S.A..

19. Lygin, V. K., B. Piosczyk, G. Dammertz, A. N. Kuftin, and V. E. Zapevalov, "A diode electron gun for a 1MW 140 GHz gyrotron," Int. J. Electronics, Vol. 82, No. 2, 193-201, 1997.
doi:10.1080/002072197136192

20. Fliflet, A. W., A. J. Dudas, M. E. Read, and J. M. Baird, "Use of electrode synthesis technique to design MIG-type guns for high power gyrotrons," International Journal of Electronics, Vol. 53, No. 6, 743-754, 1982.
doi:10.1080/00207218208901565

21. Barroso, J. J., A. Montes, and C. A. B. Silva, "The use of a synthesis method in the design of gyrotron electron guns," International Journal of Electronics, Vol. 59, No. 1, 33-47, 1985.
doi:10.1080/00207218508920676

22. Dryden, V. W., "Exact solutions for space-charge flow in spherical coordinates with application to magnetron injection guns," Journal of Applied Physics, Vol. 33, 3118-3124, 1962.
doi:10.1063/1.1728578

23. Danly, B. G. and R. J. Temkin, "Generalized nonlinear harmonic gyrotron theory," Phys. Fluids, Vol. 29, 561-567, 1986.
doi:10.1063/1.865446

24. Borie, E. and B. Jödicke, "Comments on the linear theory of the gyrotron," IEEE Trans. Plasma Sci., Vol. 16, 116-121, 1988.
doi:10.1109/27.3802

25. Drobot, A. T. and K. Kim, "Space charge effects on the equilibrium of guided electron flow with gyromotion," Int. J. Electronics, Vol. 51, 351, 1981.
doi:10.1080/00207218108901342

26. Ganguli, A. K. and K. R. Chu, "Limiting current in gyrotrons," Int. J. of Infrared and Millimeter Waves, Vol. 5, 103, 1984.
doi:10.1007/BF01014037

27. Piosczyk, B., "A novel 4.5-MW electron gun for a coaxial cavity gyrotron," IEEE Transactions on Electron Devices, Vol. 48, No. 12, 2001.
doi:10.1109/16.974732