Vol. 11
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-07
Focal Region Fields of Gregorian System Placed in Homogeneous Chiral Medium
By
Progress In Electromagnetics Research M, Vol. 11, 241-256, 2010
Abstract
This work presents the derivation of high frequency electromagnetic field expressions for two dimensional Gregorian system embedded in a chiral medium. Two cases have been analyzed. Firstly, the chirality parameter is adjusted to support positive phase velocity (PPV) for both left circularly polarized (LCP) and right circularly polarized (RCP) modes traveling in the medium. Secondly, the chirality is adjusted in such a way that one mode travels with PPV and other with negative phase velocity (NPV). Method proposed by Maslov is used, for finding the field expressions, to overcome the problem of Geometrical Optics (GO) because GO fails at caustics. The results for both the cases are given in the paper.
Citation
Muhammad Qasim Mehmood, Muhammad Junaid Mughal, and Tariq Rahim, "Focal Region Fields of Gregorian System Placed in Homogeneous Chiral Medium," Progress In Electromagnetics Research M, Vol. 11, 241-256, 2010.
doi:10.2528/PIERM10031104
References

1. Lakhtakia, A., Beltrami Fields in Chiral Media, Contemporary Chemical Physics, World Scientific Series, 1994.

2. Mackay, T. G. and A. Lakhtakia, "Simultaneously negative and positive phase velocity propagation in an isotropic chiral medium," Microwave Opt. Technol. Lett., Vol. 49, 1245-1246, 2007.
doi:10.1002/mop.22434

3. Lakhtakia, A., M. W. McCall, W. S. Weiglhofer, J. Gerardin, and J. Wang, "On mediums with negative phase velocity: A brief overview," Arch. Elektr. Ueber., Vol. 56, 407-410, 2002.

4. Mackay, T. G., "Plane waves with negative phase velocity in an isotropic chiral medium ," Microwave Opt. Technol. Lett., Vol. 45, 120-121, 2005.
doi:10.1002/mop.20742

5. Maslov, V. P., Perturbation Theory and Asymptotic Methods, Izdat. Moskov. Gos. Univ., Moscow, 1965 (in Russian). Translated into Japanese by Ouchi et al., Iwanami.

6. Maslov, V. P. and V. E. Nazaikinski, "Asymptotics of operator and pseudo-differential equations," Consultants Bureau, N.Y., 1988.

7. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Paraboloidal reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Progress In Electromagnetics Research, Vol. 92, 223-234, 2009.
doi:10.2528/PIER09031809

8. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602

9. Hussain, A., Q. A. Naqvi, and K. Hongo, "Radiation characteristics of the wood lens using Maslov's method," Progress In Electromagnetics Research, Vol. 73, 107-129, 2007.
doi:10.2528/PIER07030302

10. Ji, Y. and K. Hongo, "Analysis of electromagnetic waves refracted by a spherical dielectric interface by Maslov's method," J. Opt. Soc. A. Am., Vol. 8, 541-548, 1991.
doi:10.1364/JOSAA.8.000541

11. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, "Fields around the focal region of a paraboloidal reflector placed in isotropic chiral medium," Progress In Electromagnetics Research B, Vol. 15, 57-76, 2009.
doi:10.2528/PIERB09031002

12. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, "Focal region field of a paraboloidal reflector coated with isotropic chiral medium," Progress In Electromagnetics Research, Vol. 94, 351-366, 2009.
doi:10.2528/PIER09032703

13. Rahim, T., M. J. Mughal, and Q. A. Naqvi, "Focal region field of Perfect Electromagnetic Conductor (PEMC) paraboloidal reflector placed in homogeneous chiral medium," Progress In Electromagnetics Research M, Vol. 8, 143-152, 2009.
doi:10.2528/PIERM09052104

14. Rahim, T., M. J. Mughal, and Q. A. Naqvi, "PEMC paraboloidal reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity simultaneously," Progress In Electromagnetics Research Letters, Vol. 10, 77-86, 2009.
doi:10.2528/PIERL09052103

15. Rahim, T. and M. J. Mughal, "Analysis of the high frequency field expressions at the caustic region of a spherical reflector placed in chiral medium," Journal of infrared, Millimeter and Terahertz waves, Vol. 31, 380-390, 2009.

16. Rahim, T. and M. J. Mughal, "Spherical reflector in chiral medium supporting positive phase velocity and negative phase velocity simultaneously," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1665-1673, 2009.

17. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "What happens to plane waves at the planar interfaces of mirror conjugated chiral media," Journal of the Optical Society of America A: Optics, Image Science, and Vision, Vol. 6, No. 1, 23-26, January 1989.
doi:10.1364/JOSAA.6.000023

18. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of cylindrical reflector placed in chiral medium," Progress In Electromagnetics Research, Vol. 76, 153-182, 2007.
doi:10.2528/PIER07070401

19. Faryad, M. and Q. A. Naqvi, "Cylindrical reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 563-572, 2008.
doi:10.1163/156939308784150344

20. Aziz, A., A. Ghaffar, and Q. A. Naqvi, "Analysis of the fields in two dimensional Gregorian system," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 85-97, 2008.
doi:10.1163/156939308783122733