Vol. 15
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-03
The Influences of Confined Phonons on the Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Doping Superlattices
By
Progress In Electromagnetics Research Letters, Vol. 15, 175-185, 2010
Abstract
The influences of confined phonons on the nonlinear absorption coefficient (NAC) by a strong electromagnetic wave for the case of electron-optical phonon scattering in doped superlattices (DSLs) are theoretically studied by using the quantum transport equation for electrons. The dependence of NAC on the energy (), the amplitude (E0) of external strong electromagnetic wave, the temperature (T) of the system, is obtained. Two cases for the absorption: Close to the absorption threshold ∣khΩ - 0∣<< ε and far away from the absorption threshold ∣khΩ - 0∣>> ε (k = 0, 1, 2..., 0 and ε are the frequency of optical phonon and the average energy of electrons, respectively) are considered. The formula of the NAC contains a quantum number m characterizing confined phonons. The analytic expressions are numerically evaluated, plotted and discussed for a specific of the n-GaAs/p-GaAs DSLs. The computations show that the spectrums of the NAC in case of confined phonon are much different from they are in case of un-confined phonon and strongly depend on a quantum number m characterizing confinement phonon.
Citation
Nguyen Quang Bau, Do Manh Hung, and Le Thai Hung, "The Influences of Confined Phonons on the Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Doping Superlattices," Progress In Electromagnetics Research Letters, Vol. 15, 175-185, 2010.
doi:10.2528/PIERL10030911
References

1. Mori, N. and T. Ando, "Electron-optical-phonon interaction in single and double heterostructures," Phys. Rev. B, Vol. 40, 6175, 1989.
doi:10.1103/PhysRevB.40.6175

2. Rucker, H., E. Molinari, and P. Lugli, "Microscopic calculation of the electron-phonon interaction in quantum wells," Phys. Rev. B, Vol. 45, 6747, 1992.
doi:10.1103/PhysRevB.45.6747

3. Pozela, J. and V. Juciene, "Enhancement of electron mobility in 2D MODFET structures," Sov. Phys. Tech. Semicond., Vol. 29, 459, 1995.

4. Vasilopoulos, P., M. Charbonneau, and C. M. Van Vliet, "Linear and nonlinear electrical conduction in quasi-two-dimensional quantum-wells," Phys. Rev. B, Vol. 35, 1334, 1987.
doi:10.1103/PhysRevB.35.1334

5. Suzuki, A., "Theory of hot-electron magnetophonon resonance in quasi-twodimensional quantum-well structures," Phys. Rev. B, Vol. 45, 6731, 1992.
doi:10.1103/PhysRevB.45.6731

6. Pavlovich, V. V. and E. M. Epshtein, "Quantum theory of absorption of electronmagnetic wave by free carries in simiconductors," Sov. Phys. Stat., Vol. 19, 1970, 1977.

7. Shmelev, G. M., I. A. Chaikovskii, and N. Q. Bau, "HF conduction in semiconductors superlattices," Sov. Phys. Tech. Semicond., Vol. 12, 1932, 1978.

8. Bau, N. Q. and T. C. Phong, "Calculations of the absorption coefficient of a weak EMW by free carriers in quantum wells by the Kubo-Mori Method," J. Phys. Soc. Jpn., Vol. 67, 3875, 1998.
doi:10.1143/JPSJ.67.3875

9. Bau, N. Q., N. V. Nhan, and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in doped superlattices by using the Kubo-Mori method," J. Kor. Phys. Soc., Vol. 42, No. 1, 149, 2002.

10. Schmit-Rink, S., D. S. Chemla, and D. A. B. Miler, "Linear and nonlinear optical properties in semiconductor quantum wells," Adv. Phys., Vol. 38, 89, 1989.
doi:10.1080/00018738900101102

11. Bau, Q. N., D. M. Hung, and B. N. Ngoc, "The nonlinear absorption coeffcient of a strong electromagnetic wave caused by confined electrons in quantum wells," J. Korean Phys. Soc., Vol. 2, 765, 2009.