Vol. 13
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-04-15
Diffraction by a Lossy Double-Negative Metamaterial Layer: a Uniform Asymptotic Solution
By
Progress In Electromagnetics Research Letters, Vol. 13, 173-180, 2010
Abstract
A uniform asymptotic solution is presented for evaluating the field diffracted by the edge of a lossy double-negative metamaterial layer illuminated by a plane wave at skew incidence. It is given in terms of the Geometrical Optics response of the structure and the transition function of the Uniform Geometrical Theory of Diffraction, and results easy to handle. Its accuracy is well-assessed by numerical tests and comparisons with a commercial solver based on the Finite Element Method.
Citation
Gianluca Gennarelli, and Giovanni Riccio, "Diffraction by a Lossy Double-Negative Metamaterial Layer: a Uniform Asymptotic Solution," Progress In Electromagnetics Research Letters, Vol. 13, 173-180, 2010.
doi:10.2528/PIERL10030906
References

1. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-Interscience, 2006.

3. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications," Wiley-Interscience, Hoboken, 2006.

4. Gennarelli, G. and G. Riccio, "A UAPO-based solution for the scattering by a lossless double-negative metamaterial slab," Progress In Electromagnetics Research M, Vol. 8, 207-220, 2009.
doi:10.2528/PIERM09072003

5. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B, Vol. 23, 434-438, 2006.
doi:10.1364/JOSAB.23.000434

6. Alu, A., A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Optics Express, Vol. 14, 1557-1567.
doi:10.1364/OE.14.001557

7. Kussow, A. G., A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, "MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis," Phys. Rev. B, Vol. 76, No. 195123, 1-7, 2007.

8. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

9. Jun, C. T., Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, "Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials," Phys. Lett. A, Vol. 323, 484-494, 2004.