Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-27
Characterization of the Regular Polygonal Waveguide for the RF EM Shielding Application
By
Progress In Electromagnetics Research M, Vol. 12, 95-105, 2010
Abstract
This article presents a theoretical characterization of the regular polygonal waveguide (RPW) having n-sides. Based on the symmetrical circular symmetry of the RPW and the circular waveguide (CW), the analogy between the electromagnetic (EM) behaviors of these to waveguide (WG) is established. After a brief recall about the state of the art concerning the WG engineering and its application, we introduce a basic theory of the WG presenting a regular polygonal cross-section with n-sides. By considering, the fundamental mode TE11, we develop the main mathematical formulas summarizing the different characteristics (cut-off frequency, fc, propagating constant, k11 and S-parameters) appropriated to any RPW in function of its physical parameters (number of sides, n, diameter, D and height, h). In order to verify the validation of the developed analytical expressions, comparisons between the HFSS simulated and theoretical dispersion diagrams of regular pentagonal (n=5), hexagonal (n=6), heptagonal (n=5) metallic (copper) WG with for example, 50 mm outer diameter are presented. So, it was demonstrated that very good correlation between the theoretical predictions (fc(n), k11(n)) is found with a relative error less than 1%. As application of the present study in terms of EM wave shielding, simulation of metallic wall with hexagonal aperture is also performed. Finally, discussion about the future work is drawn in conclusion.
Citation
Blaise Ravelo, and Belahcene Mazari, "Characterization of the Regular Polygonal Waveguide for the RF EM Shielding Application," Progress In Electromagnetics Research M, Vol. 12, 95-105, 2010.
doi:10.2528/PIERM10030306
References

1. Auld, B. A., "The synthesis of symmetrical waveguide circulator," IEEE Tran. MTT, Vol. 7, 238-246, 1959.
doi:10.1109/TMTT.1959.1124688

2. Akaiwa, Y., "Bandwidth enlargement of a millimeter wave Y-circulator with half-wavelength line resonantors," IEEE Tran. MTT, Vol. 22, 1283-1286, 1974.
doi:10.1109/TMTT.1974.1128477

3. http://www.microwaves101.com/encyclopedia/waveguide.cfm.

4. Li, C., D. Wu, and K. Seo, "Rectangle waveguide to substrate integrated waveguide transition and power divider," MOTL, Vol. 52, No. 2, 375-378, Feb. 2010.
doi:10.1002/mop.24902

5. Simon, W., M. Werthen, and I. Wolff, "A novel coplanar transmission line to rectangular waveguide transition," Microwave Symposium Digest, 1998 IEEE MTT-S Int., Vol. 1, No. 7-12, 257-260, Jun. 1998.

6. Jia, H., K. Yoshitomi, and K. Yasumoto, "Rigorous analysis of rectangular waveguide junctions by Fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 12, 1597-1598, 1998.
doi:10.1163/156939398X00539

7. MacPhie, R. H. and K.-L. Wu, "Scattering at the junction of a rectangular waveguide and a larger circular waveguide," IEEE Tran. MTT, Vol. 43, No. 9, 2041-2045, Sep. 1995.
doi:10.1109/22.414538

8. Arcambal, C., Introduction des contraintes de propagation et rayonnement electromagnetiques dans l'etude et la conception d'emetteurs/recepteurs de puissance, Ph.D. Thesis, Univ. Rouen, France, Jul. 2003 (in French).

9. Kao, K. C. and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," IEE Proc., Vol. 133, Pt. J, No. 3, Jun. 1986.

10. Queffelec, P., P. Talbot, M. L. Floc'h, and P. Gelin, "Broad-band measurement of all complex permeability tensor components and complex permittivity of ferrites using a rectangular waveguide," J. Phys. IV, Vol. 7, 294-304, 1997.

11. Soleimani, H., Z. Abbas, K. Khalid, N. Yahya, and H. Soleimani, "Determination S-parameters of PTFE at X-band frequency using FEM modeling rectangular waveguide," European Journal of Scientific Research, Vol. 39, No. 1, 105-110, 2010.

12. http://www.hollandshielding.com/honeycomb.php.

13. Honeycomb sandwich design technology, Hexcel Composites, Publication No. AGU 075b, Dec. 2000.

14. Bahadorzadeh, M., M. N. Moghaddasi, and A. R. Attari, "Improving the shielding effectiveness of a rectangular metallic enclosure with aperture by using extra shielding wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706

15. Lozano-Guerrero, A. J., A. Daz-Morcillo, M. A. Garca-Fernandez, and J. V. Balbastre-Tejedor, "Fast computation of shielding effectiveness of metallic enclosures with apertures and inner elements," MOTL, Vol. 51, No. 12, 2832-2836, Dec. 2009.
doi:10.1002/mop.24745

16. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803

17. Araneo, R. and G. Lovat, "An efficient MoM formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures," IEEE Tran. EMC, Vol. 50, No. 2, 294-304, May 2008.

18. Lucido, M., G. Panariello, and F. Schettino, "Full wave analysis of arbitrary polygonal section waveguides," IEEE Int. Symp. MTT, 1675-1678, Jun. 3-8, 2007.

19. Mazumdar, J. and D. Hill, "A note on the determination of cutoff frequencies of hollow waveguides by a contour line-conformal mapping technique," Applied Acoustics, Vol. 21, No. 1, 23-37, 1987.
doi:10.1016/0003-682X(87)90072-7

20. Du, L., R. S. Chen, and Y. Yang, "Perfectly matched layers backed by the second-order waveguide impedance boundary condition for the time-domain finite-element solution of waveguide problems ," MOTL, Vol. 51, No. 12, 2870-2874, Dec. 2009.
doi:10.1002/mop.24774