Vol. 13
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-07-07
Analytical Pole Residue Calculation in Spectral Method of Moments Formulations for Periodic Structures
By
Progress In Electromagnetics Research M, Vol. 13, 83-94, 2010
Abstract
An analytical method for evaluating pole-residues in spectral method of moments (MoM) formulations is presented. Spectral integral formulations for periodic structures involve the inverse of the MoM matrix, which exhibits a periodic set of pole singularities, corresponding to the zeros of the matrix's determinant. So far, these singularities have not been extracted and the corresponding pole-residues were calculated directly from the differential or integral definitions of the residue. In this work, we consider an analytical expression for the solution to the MoM matrix equation, which enables the extraction of pole singularities and the analytical evaluation of pole-residues. We also present a comparison to previous methods.
Citation
Y. Kaganovsky, and Reuven Shavit, "Analytical Pole Residue Calculation in Spectral Method of Moments Formulations for Periodic Structures," Progress In Electromagnetics Research M, Vol. 13, 83-94, 2010.
doi:10.2528/PIERM10022512
References

1. Sigelman, R. A. and A. Ishimaru, "Radiation from periodic structures excited by an aperiodic source," IEEE Trans. Antennas Propagation, Vol. 13, 354-364, May 1965.
doi:10.1109/TAP.1965.1138437

2. Yang, H. Y. D. and D. R. Jackson, "Theory of line-source radiation from a metal-strip grating dielectric-slab structure," IEEE Trans. Antennas Propagation, Vol. 48, 556-563, April 2000.
doi:10.1109/8.843669

3. Capolino, F., D. R. Jackson, and D. R. Wilton, "Mode excitation from sources in two-dimensional EBG structures using the array scanning method," IEEE Microwave and Wireless Components Letters, Vol. 15, 49-51, February 2005.
doi:10.1109/LMWC.2004.842805

4. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Wave, IEEE Press, New Youk, 1994.

5. Olyslager, F. and H. Derudder, "Series representation of green dyadics for layered media using PMLs," IEEE Trans. Antennas Propagation, Vol. 51, 2319-2326, September 2003.
doi:10.1109/TAP.2003.816342

6. Mesa, F. and D. R. Jackson, "A novel approach for calculating the characteristic impedance of printed-circuit lines," IEEE Microwave and Wireless Components Letters, Vol. 15, 283-285, April 2005.
doi:10.1109/LMWC.2005.845751

7. Das, N. K., "A new theory of the characteristic impedance of general printed transmission lines applicable when power leakage exists," IEEE Trans. Microwave Theory and Tech., Vol. 48, 1108-1117, July 2000.
doi:10.1109/22.848493

8. Kreyszig, E., Advanced Engineering Mathematics, 7th Ed., 770-777, John Wiley and Sons, Inc, New-York, 1993.

9. Horn, R. A. and C. R. Johnson, "Matrix Analysis," Cambridge University Press, 1985.

10. Baccarelli, P., P. Burghignoli, C. D. Nallo, F. Frezza, A. Galli, P. Lampariello, and G. Ruggieri, "Full-wave analysis of printed leaky-wave phased arrays," Int. J. RF and Microwave Computer Aided Eng., Vol. 12, 272-287, May-June 2002.
doi:10.1002/mmce.10024

11. Capolino, F., D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propagation, Vol. 53, 91-99, January 2005.
doi:10.1109/TAP.2004.840518

12. Kay, S. M., "Fundamentals of Statistical Signal Processing: Estimation Theory," Prentice Hall, 1993, 73-74.

13. Stewart, G. W., "On the adjugate matrix," Linear Algebra and its App., Vol. 283, 151-164, 1998.
doi:10.1016/S0024-3795(98)10098-8

14. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing," Cambridge University Press, 1992, 371.