Vol. 20
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-04-13
Through -the-Wall Detection of Stationary Human Targets Using Doppler Radar
By
Progress In Electromagnetics Research B, Vol. 20, 147-166, 2010
Abstract
In homeland security and law enforcement situations, it is often required to remotely detect human targets obscured by walls and barriers. In particular, we are specifically interested in scenarios that involve a human whose torso is stationary. We propose a technique to detect and characterize activity associated with a stationary human in through-the-wall scenarios using a Doppler radar system. The presence of stationary humans is identified by detecting Doppler signatures resulting from breathing, and movement of the human arm and wrist. The irregular, transient, non-uniform, and non-stationary nature of human activity presents a number of challenges in extracting and classifying Doppler signatures from the signal. These are addressed using bio-mechanical human arm movement models and the empirical mode decomposition (EMD) algorithm for Doppler feature extraction. Experimental results demonstrate the effectiveness of our approach to extract Doppler signatures corresponding to human activity through walls using a 750-MHz Doppler radar system.
Citation
Ram M. Narayanan, Mahesh C. Shastry, Pin-Heng Chen, and Mark Levi, "Through -the-Wall Detection of Stationary Human Targets Using Doppler Radar," Progress In Electromagnetics Research B, Vol. 20, 147-166, 2010.
doi:10.2528/PIERB10022206
References

1. Greneker, E. F., "Radar sensing of heartbeat and respiration at a distance with security applications," Proc. SPIE Conf. Radar Sensor Technol. II, Vol. 3066, 22-27, Orlando, FL, April 1997.

2. Greneker, E. F., "Radar flashlight for through-the-wall detection of humans," Proc. SPIE Conf. Targets Backgr.: Charact. Represent. IV, Vol. 3375, 280-285, Orlando, FL, April 1998.

3. Ahmad, F., G. J. Frazer, S. A. Kassam, and M. G. Amin, "Design and implementation of near field wideband synthetic aperture beamformer," IEEE Trans. Aerosp. Electron. Syst., Vol. 40, No. 1, 206-220, 2004.
doi:10.1109/TAES.2004.1292154

4. Franceschetti, G., J. Tatoian, D. Giri, and G. Gibbs, "Timed arrays and their application to impulse SAR for through-the-wall imaging ," IEEE Antennas Propag. Soc. Int. Symp. Dig., 3067-3070, Monterey, CA, June 2004.

5. Nag, S., M. A. Barnes, T. Payment, and G. Holladay, "Ultrawideband through-wall radar for detecting the motion of people in real time ," Proc. SPIE Conf. Radar Sens. Technol. Data Vis., Vol. 4744, 48-57, Orlando, FL, April 2002.

6. Attiya, A. M., A. M. Bayram, A. Safaai-Jazi, and S. M. Raid, "UWB applications for through wall detection," IEEE Antennas Propag. Soc. Int. Symp. Dig., 3079-3082, Monterey, CA, June 2004.

7. Geisheimer, J. E., E. F. Greneker, and W. S. Marshall, "High-resolution Doppler model of the human gait," Proc. SPIE Conf. Radar Sens. Technol. Data Vis., Vol. 4744, 8-18, Orlando, FL, April 2002.

8. Van Dorp, P. and F. C. A. Groen, "Human walking estimation with radar," IEE Proc. Radar Sonar Navig., Vol. 150, No. 5, 356-365, 2003.
doi:10.1049/ip-rsn:20030568

9. Falconer, D. G., R. W. Ficklin, and K. G. Konolige, "Robot-mounted through-wall radar for detecting, locating, and identifying building occupants ," Proc. IEEE Int. Conf. Robot. Autom., 1868-1875, San Fransisco, CA, July 2000.

10. Kim, Y. and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1328-1337, 2009.
doi:10.1109/TGRS.2009.2012849

11. Thayaparan, T., S. Abrol, E. Riseborough, D. Stankovic, L. Lamothe, and G. Duff, "Analysis of radar micro-Doppler signatures from experimental helicopter and human data," IEE Proc. Radar, Sonar Navig., Vol. 1, No. 4, 289-299, 2003.

12. Ram, S. S., Y. Li, A. Lin, and H. Ling, "Doppler-based detection and tracking of humans in indoor environments," J. Franklin Inst., Vol. 345, No. 6, 679-699, 2008.
doi:10.1016/j.jfranklin.2008.04.001

13. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis ," Proc. R. Soc. A, Vol. 454, No. 1971, 679-699, 1998.

14. Lai, C.-P., R. M. Narayanan, Q. Ruan, and A. Davydov, "Hilbert-Huang transform analysis of human activities using through-wall noise and noise-like radar," IET Radar Sonar Navig., Vol. 2, No. 4, 244-255, 2008.
doi:10.1049/iet-rsn:20070140

15. Rilling, G. and P. Flandrin, "On the influence of sampling on the empirical mode decomposition," Proc. Int. Conf. Acoust. Speech Signal Process., Vol. 3, 444-447, Toulouse, France, May 2006.

16. Heydarian, M. and J. D. Reiss, "Extraction of long-term structures in musical signals using the empirical mode decomposition," Proc. 8th Int. Conf. on Digit. Audio Eff., 258-261, Madrid, Spain, September 2005.

17. Kamath, V., Y.-C. Lai, L. Zhu, and S. Urval, "Empirical mode decomposition and blind source separation methods for antijamming with GPS signals ," IEEE/ION Position Location Navig. Symp., Vol. 1, 335-341, San Diego, CA, April 2006.

18. Camp, J. B., J. K. Cannizzo, and K. Numata, "Application of the Hilbert-Huang transform to the search for gravitational waves," Phys. Rev. D, Vol. 75, No. 6, 061101.1-5, 2007.

19. Zhang, R. R., S. Ma, and S. Hartzell, "Signatures of the seismic source in EMD-based characterization of the 1994 Northridge, California earthquake recordings," Bull. Seismol. Soc. Am., Vol. 93, No. 1, 501-518, 2003.
doi:10.1785/0120010285

20. Flandrin, P., G. Rilling, and P. Goncalves, "Empirical mode decomposition as a filter bank," IEEE Signal Process. Lett., Vol. 11, No. 2, 112-114, 2004.
doi:10.1109/LSP.2003.821662

21. Rilling, G. and P. Goncalves, EMD Toolbox for MATLAB, http://perso.ens-lyon.fr/patrick.flandrin/emd.html, 2008.

22. Ram, S. S. and H. Ling, "Micro-Doppler signature simulation of computer animated human and animal motions," IEEE Antennas Propag. Soc. Int. Symp. Dig., 679-699, San Diego, CA, July 2008.

23. Atkeson, C. and J. Hollerbach, "Kinematic features of unrestrained vertical arm movements," J. Neurosci., Vol. 5, No. 1, 2318-2330, 1985.

24. Hollerbach, J. and T. Flash, "Dynamic interactions between limb segments during planar arm movement," Biol. Cybern., Vol. 44, No. 1, 67-77, 1983.
doi:10.1007/BF00353957

25. Choi, H. and W. J. Williams, "Improved time-frequency representation of multicomponent signals using exponential kernels," IEEE. Trans. Acoust. Speech Signal Process., Vol. 37, No. 6, 862-871, 1989.
doi:10.1109/ASSP.1989.28057

26. Chen, P.-H., R. M. Narayanan, C. P. Lai, and A. Davydov, "Through wall ranging and imaging using UWB random noise waveform: System design considerations and preliminary experimental results," IEEE Antennas Propag. Soc. Int. Symp. Dig., doi: 10.1109/APS.2009.5172369, Charleston, SC, June 2009.