Vol. 104
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-14
Subwavelength Microwave Guiding by Periodically Corrugated Strip Line
By
Progress In Electromagnetics Research, Vol. 104, 113-123, 2010
Abstract
A new type of microwave transmission line structure is proposed in order to reduce the crosstalk between transmission line circuits. In this structure, the edge of the metal strip line is periodically corrugated with subwavelength grooves of appropriate geometric parameters, and thus the transmission lines can support highly localized spoof surface plasmon polaritons (SPPs) at microwave frequencies. The theoretical simulation shows that the crosstalk between such a transmission line and a conventional strip line is very low at microwave frequencies, and this is further verified experimentally. This type of transmission line structures has great potential applications in high speed circuit systems.
Citation
Jin-Jei Wu, "Subwavelength Microwave Guiding by Periodically Corrugated Strip Line," Progress In Electromagnetics Research, Vol. 104, 113-123, 2010.
doi:10.2528/PIER10021202
References

1. Raether, H., Surface Plasmons, Springer-Verlag, Berlin, 1988.

2. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

5. Girard, C., "Near fields in nanostructures," Rep. Prog. Phys., Vol. 68, 1883-1933, 2005.
doi:10.1088/0034-4885/68/8/R05

6. Sihvola, H., "Character of surface plasmons in layered spherical structures ," Progress In Electromagnetics Research, Vol. 62, 317-331, 2006.
doi:10.2528/PIER06042801

7. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.
doi:10.1126/science.1098999

8. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, S97-S101, 2005.
doi:10.1088/1464-4258/7/2/013

9. Jiang, T., L. Shen, X. Zhang, and L. Ran, "High-order modes of spoof surface Plasmon polaritons on periodically corrugated metal surface," Progress In Electromagnetics Research M, Vol. 8, 91-102, 2009.
doi:10.2528/PIERM09062901

10. Garcia de Abajo, F. J. and J. J. Saenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett., Vol. 95, 233901, 2005.
doi:10.1103/PhysRevLett.95.233901

11. Hibbins, P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, 670-672, 2005.
doi:10.1126/science.1109043

12. Maier, S. A., S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires ," Phys. Rev. Lett., Vol. 97, 176805-1-4, 2006.

13. Chen, Y., Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves ," Opt. Express, Vol. 14, 13021-13029, 2006.
doi:10.1364/OE.14.013021

14. Wang, K. and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett., Vol. 96, 157401-1-4, 2006.

15. Shen, L. F., X. D. Chen, Y. Zhong, and K. Agarwal, "The effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B, Vol. 77, 075408-1-7, 2008.

16. Wu, J. J., T. J. Yang, and L. F. Shen, "Subwavelength microwave guiding by a periodically corrugated metal wire," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 11-19, 2009.
doi:10.1163/156939309787604616

17. Khalaj-Amirhosseini, M., "Wideband differential phase shifter using microstrip nonuniform transmission lines," Progress In Electromagnetics Research Letters, Vol. 3, 151-160, 2008.
doi:10.2528/PIERL08031603

18. Khodabakhshi, H. and A. Cheldavi, "EM field coupling to non-uniform microstrip lines using coupled multi-conductor strips model," Progress In Electromagnetics Research B, Vol. 17, 309-326, 2009.
doi:10.2528/PIERB09080202

19. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992.