Vol. 104
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-30
Electromagnetic Scattering by Conducting BOR Coated with Chiral Media Above a Lossy Half-Space
By
Progress In Electromagnetics Research, Vol. 104, 385-401, 2010
Abstract
Electromagnetic scattering by conducting bodies of revolution (BOR) coated with homogeneous chiral media above a lossy half-space is formulated in terms of the Poggio-Miller-Chang-Harrington-Wu surface integral equation combined with combined field integral equation. A field decomposition scheme is utilized to split a chiral media into two equivalent homogeneous media. The spatial domain half-space Green's functions are obtained via the discrete complex image method. Due to the rotational symmetry property of BOR, the method of moment for BOR (BORMoM) is applied to the linear system solved by the multifrontal direct solver. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method.
Citation
Da-Zhi Ding, and Ru-Shan Chen, "Electromagnetic Scattering by Conducting BOR Coated with Chiral Media Above a Lossy Half-Space," Progress In Electromagnetics Research, Vol. 104, 385-401, 2010.
doi:10.2528/PIER10021004
References

1. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility meta-material waveguides," Progress In Electromagnetics Research B, Vol. 14, 107-126, 2009.
doi:10.2528/PIERB09012201

2. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.2528/PIERL09032803

3. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves re°ected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216

4. Varadan, V. K., V. V. Varadan, and A. Lakhtakia, "On the possibility of designing anti-reflection coatings using chiral materials," J. Wave-Mater. Interact., Vol. 2, No. 1, 71-81, 1987.

5. Bohren, C. F. and F. Craig, "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, No. 3, 458-462, Dec. 1974.
doi:10.1016/0009-2614(74)85144-4

6. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface, Sci., Vol. 66, No. 1, 105-109, Aug. 1978.
doi:10.1016/0021-9797(78)90189-3

7. Chittayil, K. and A. Lakhtakia, "Electromagnetic scattering by a chiral cylinder immersed in another chiral medium," Optik, Vol. 89, 59-64, 1991.

8. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propag., Vol. 38, No. 9, 1448-1455, Sep. 1990.
doi:10.1109/8.56998

9. Lakhtakia, A. and B. Shanker, "Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell-Garnett model," Int. J. Appl. Electromagn. Mater., Vol. 4, 65-82, 1993.

10. Rojas, R. G., "Integral equations for EM scattering by homogeneous/inhomogeneous two-dimensional chiral bodies," Inst. Elect. Eng. Microw., Antennas Propag., Vol. 141, No. 5, 385-392, May 1994.
doi:10.1049/ip-map:19941267

11. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Applied Optics, Vol. 24, 4146-4154, 1985.
doi:10.1364/AO.24.004146

12. Lakhtakia, A., "The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: Formulation and analysis ," Optik, Vol. 86, 155-161, 1991.

13. Zhang, Y. J., A. Bauer, and E. P. Li, "T-matrix analysis of multiple scattering from parallel semi-circular channels filled with chiral media in a conducting plane," Progress In Electromagnetics Research, Vol. 53, 299-318, 2009.

14. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501

15. Yuceer, M., J. R. Mautz, and E. Arvas, "Moment of methods solution for the radar cross section of a chiral body of revolution," IEEE Trans. Antennas Propag., Vol. 53, 1163-1167, 2005.
doi:10.1109/TAP.2004.842664

16. Dunn, E. A., J.-K. Byun, E. D. Branch, and J.-M. Jin, "Numerical simulation of BOR scattering and radiation using a higher order FEM ," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 945-952, Mar. 2006.
doi:10.1109/TAP.2006.869936

17. Chen, J. and J. G. Wang, "A novel body-of-revolution finite-difference time-domain method with weakly conditional stability," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 6, 377-399, Jun. 2008.
doi:10.1109/LMWC.2008.922574

18. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the transform method," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3374-3384, Oct. 2005.
doi:10.1109/TAP.2005.856328

19. Semichaevsky, A., A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 925-932, Mar. 2006.
doi:10.1109/TAP.2006.869898

20. Wang, X. D., H. W. Douglas, L. W. Li, and Y. B. Gan, "Interaction of electromagnetic waves with 3-D arbitrarily shaped homogeneous chiral targets in the presence of a lossy half space," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3647-3655, Dec. 2007.
doi:10.1109/TAP.2007.910336

21. Chen, R. S., Y. Q. Hu, Z. H. Fan, D. Z. Ding, D. X. Wang, and E. K. N. Yung, "An efficient surface integral equation solution to EM scattering by chiral objects above a lossy half space," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3586-3593, 2009.
doi:10.1109/TAP.2009.2023628

22. Wang, D. X., P. Y. Lau, E. K. N. Yung, and R. S. Chen, "Scattering by conducting bodies coated with bi-isotropic materials," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2313-2319, Aug. 2007.
doi:10.1109/TAP.2007.901850

23. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "SSOR preconditioned inner-outer flexible GMRES method for MLFMM analysis of scattering of open objects," Progress In Electromagnetics Research, Vol. 89, 339-357, 2009.
doi:10.2528/PIER08112601

24. Ding, D. Z., R. S. Chen, Z. H. Fan, and P. L. Rui, "A novel hierarchical two-level spectral preconditioning technique for multilevel fast multipole analysis of electromagnetic wave scattering ," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1122-1132, Apr. 2008.
doi:10.1109/TAP.2008.919188

25. Umashankar, K., A. Taove, and S. M. Rao, "Electromagnetic scattering by arbitrarily shaped three-dimensional homogeneous lossy dielectric objects ," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

26. He, J. Q., T. J. Yu, N. Geng, and L. Carin, "Moment of methods analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium," Radio Sci., Vol. 35, 305-313, Mar.-Apr. 2000.

27. He, J. Q., A. Sullivan, and L. Carin, "Multilevel fast multipole algorithm for three-dimensional dielectric targets in the vicinity of a lossy half space ," Microw. Opt. Tech. Lett., Vol. 29, No. 2, 100-104, Apr. 2001.
doi:10.1002/mop.1097

28. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "Application of two-step spectral preconditioning technique for electromagnetic scattering in half-space ," Progress In Electromagnetics Research, Vol. 94, 383-402, 2009.
doi:10.2528/PIER09060906

29. Aksun, M. I., "A robust approach for the derivation of closed-form Green's functions ," IEEE Trans. Microwave Theory and Techique, Vol. 44, 651-658, May 1996.
doi:10.1109/22.493917

30. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: Theroy," IEEE Trans. Antennas Propag., Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240

31. Chen, R. S., L. Mo, and E. K. N. Yung, "Multifrontal method preconditioned GMRES-FFT algorithm for fast analysis of microstrip circuits ," International Journal for Computational and Mathematics in Electrical and Electronic Engineering, Vol. 24, No. 1, 94-106, 2005.
doi:10.1108/03321640510571075