1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059
2. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett., Vol. 74, No. 9, 1212-1214, 1999.
doi:10.1063/1.123502
3. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002.
doi:10.1103/PhysRevB.65.195115
4. Yu, X. and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett., Vol. 83, No. 16, 3251-3253, 2003.
doi:10.1063/1.1621736
5. Zabelin, V., L. A. Dunbar, N. L. Thomas, R. Houdre, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, "Self-collimating photonic crystal polarization beam splitter," Opt. Lett., Vol. 32, No. 5, 530-532, 2007.
doi:10.1364/OL.32.000530
6. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.
doi:10.1103/PhysRevB.68.045115
7. Ruan, Z. and S. He, "Open cavity formed by a photonic crystal with negative effective index of refraction," Opt. Lett., Vol. 30, No. 17, 2308-2310, 2005.
doi:10.1364/OL.30.002308
8. Ramakrishna, S. A., S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, "Confining light with negative refraction in checkerboard metamaterials and photonic crystals," Phys. Rev. A, Vol. 75, 063830, 2007.
doi:10.1103/PhysRevA.75.063830
9. Tanaka, Y., J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Mater., Vol. 6, 862-865, 2007.
doi:10.1038/nmat1994
10. Shen, X.-P., H. Kui, Y. Fang, H.-P. Li, Z.-Y.Wang, and Q. Zhong, "New configuration of ring resonator in photonic crystal based on self-collimation," Chinese Physics Letters, Vol. 25, No. 12, 4288-4291, 2008.
doi:10.1088/0256-307X/25/12/029
11. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, Chichester, 1998. http://www.comsol.com.
12. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, Artech House, Boston, 2000.
13. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express, Vol. 8, No. 3, 173-190, 2001. http://abinitio.mit.edu/mpb.
doi:10.1364/OE.8.000173
14. Foteinopoulou, S. and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B, Vol. 72, 165112, 2005.
doi:10.1103/PhysRevB.72.165112
15. Nagesh, E. D. V., N. Yogesh, and V. Subramanian, "Application of defect induced microwave band gap structure for non-destructive evaluation and the construction of a frequency selector switch," PIERS Online, Vol. 4, No. 6, 631-634, 2008.
doi:10.2529/PIERS071220053416
16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Comp. Phys. Commun., Vol. 181, 687-702, 2010.
doi:10.1016/j.cpc.2009.11.008
17. Post, E. J., "Sagnac effect," Rev. Mod. Phys., Vol. 39, No. 2, 475-493, 1967.
doi:10.1103/RevModPhys.39.475
18. Sunada, S. and T. Harayama, "Sagnac effect in resonant microcavities," Phys. Rev. A, Vol. 74, 021801(R), 2006.
doi:10.1103/PhysRevA.74.021801
19. Steinberg, B. Z. and A. Boag, "Splitting of microcavity degenerate modes in rotating photonic crystals-the miniature optical gyroscopes ," J. Opt. Soc. Am. B, Vol. 24, No. 1, 142-151, 2007.
doi:10.1364/JOSAB.24.000142