Vol. 11
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-18
Pattern Optimization in an UWB Spiral Array Antenna
By
Progress In Electromagnetics Research M, Vol. 11, 137-151, 2010
Abstract
We have proposed a new architecture for an array in which the elements are placed on a spiral curve in order to obtain an ultra wideband (UWB) radiation pattern. In addition, array factor and bandwidth of the proposed spiral array are calculated. Simulated results obtained by SuperNEC and CST software have shown good agreement with the analytic calculations. Although the proposed antenna array is wideband in nature, it lacks desirable efficiency, due to poor front to back ratio (FBR) and sidelobe level (SLL). In this paper, we have chosen three different approaches in order to improve the e±ciency of proposed array. First, the effect of length and thickness tapering of elements has been studied. Second, we have used Genetic Algorithm (GA) to optimized pattern shape. Finally, the influence of metamaterial cover on array performance has been investigated. Although the first and second methods improve the radiation pattern, the array bandwidth is reduced. It is shown that the third method improves array directivity and FBR by 5-7 dB and 15-17 dB respectively within the frequency band of operation.
Citation
Amir Jafargholi, and Manouchehr Kamyab, "Pattern Optimization in an UWB Spiral Array Antenna," Progress In Electromagnetics Research M, Vol. 11, 137-151, 2010.
doi:10.2528/PIERM10010302
References

1. Allen, B., M. Dohler, E. E. Okon, W. Q. Malik, A. K. Brown, and D. J. Edwards, "Ultra-wideband Antennas and Propagation for Communications, Radar and Imaging," John Wiley, New York, 2007.

2. Rajagopalan, A., G. Gupta, A. S. Konanur, B. Hughes, and G. Lazzi, "IEEE Trans. Antennas Propag.," Increasing channel capacity of an ultrawideband MIMO system using vector antennas , Vol. 55, No. 10, 2880-2887, Oct. 2007.

3. Ren, Y.-J. and K. Chang, "An ultrawideband microstrip dual ring antenna for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 6, 457-459, 2007.

4. Panduro, M. A. and C. del Rio Bocio, "Design of beam-forming networks for scannable multi-beam antenna arrays using corps," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403

5. Emadi, M., K. H. Sadeghi, A. Jafargholi, and F. Marvasti, "Co channel interference cancellation by the use of iterative digital beamforming method," Progress In Electromagnetics Research, Vol. 87, 89-103, 2008.
doi:10.2528/PIER08100403

6. Jafargholi, A., M. Mousavi, M. Emadi, and M. Nayebi, "Wide-band nulling by five elements spiral array antenna," 6-th International Conference on ITS Telecommunications, 446-448, 2006.

7. Weng, Z.-B., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission ," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.
doi:10.2528/PIER07010301

8. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microw. Opt. Technol. Lett., Vol. 50, No. 8, 2167-2170, 2008.
doi:10.1002/mop.23598

9. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1632-1643, Jun. 2006.
doi:10.1109/TAP.2006.875470

10. Xu, H., Z. Zhao, Y. Lv, C. Du, and Luo, "Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna," Int. J. Infrared Milli. Waves, Vol. 29, 493-498, 2008.
doi:10.1007/s10762-008-9344-y

11. Zhu, F., Q. Lin, and J. Hu, "A directive patch antenna with a metamaterial cover," Proceedings of Asia Pacific Microwave Conference, 2005.

12. Huang, C., Z. Zhao, W. Wang, and X. Luo, "Dual band dual polarization directive patch antennausing rectangular metallic grids metamaterial ," J. Infrared Milli. Terahz Waves, Vol. 30, 700-708, 2009.
doi:10.1007/s10762-009-9496-4

13. Temelkuaran, B., M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
doi:10.1063/1.371905

14. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

15. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469

16. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

17. Nakano, H., K. Kikkawa, N. Kondo, Y. Iitsuka, and J. Yamauchi, "Low-profile equiangular spiral antenna backed by an EBG reflector ," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1309-1318, May 2009.
doi:10.1109/TAP.2009.2016697