Vol. 102
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-10
Photonic Transmission Spectra in One-Dimensional Fibonacci Multilayer Structures Containing Single-Negative Metamaterials
By
Progress In Electromagnetics Research, Vol. 102, 15-30, 2010
Abstract
We investigate the transmission properties of the Fibonacci quasiperiodic layered structures consisting of a pair of double positive (DPS), epsilon-negative (ENG) or/and mu-negative (MNG) materials. It is found that there exist the polarization-dependent transmission gaps which are invariant with a change of scaling and insensitive to incident angles. Analytical methods based on transfer matrices and effective medium theory have been used to explain the properties of transmission gaps of DPS-MNG, DPS-ENG, ENG-MNG Fibonacci multilayer structures.
Citation
Hadi Rahimi, Abdolrahman Namdar, Samad Roshan Entezar, and Habib Tajalli, "Photonic Transmission Spectra in One-Dimensional Fibonacci Multilayer Structures Containing Single-Negative Metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303
References

1. Veselago, V. G., "The electrodynamics of substance with stimultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847

4. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

5. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

6. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

7. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

8. Fredkin, D. R. and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett., Vol. 81, 1753, 2002.
doi:10.1063/1.1505119

9. Li, J., L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett., Vol. 90, 083901, 2003.
doi:10.1103/PhysRevLett.90.083901

10. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional reflaction bands in one-dimentional photonic crystals with left-handed materials ," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

11. Srivastava, R., S. Pati, and S. P. Ojha, "Enhacement of omnidirectional reflection in photonic crystal hetrostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

12. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202

13. Wang, L. G., H. Chen, and S. Y. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, 245102, 2004.
doi:10.1103/PhysRevB.70.245102

14. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Phys. Rev. E, Vol. 69, 066607, 2004.
doi:10.1103/PhysRevE.69.066607

15. Al, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency," IEEE Trans. Antennas Propag., Vol. 51, 2558, 2003.
doi:10.1109/TAP.2003.817553

16. Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Academic Press, New York, 1995.

17. Merlin, R., K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya, "Quasiperiodic GaAs-AlAs heterostructures," Phys. Rev. Lett., Vol. 55, 1768, 1985.
doi:10.1103/PhysRevLett.55.1768

18. Albada, M. P. and A. Lagendijk, "Observation of weak localization of light in a random medium," Phys. Rev. Lett., Vol. 55, 2692, 1985.
doi:10.1103/PhysRevLett.55.2692

19. Jin, C. J., B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B, Vol. 61, 10762, 2000.
doi:10.1103/PhysRevB.61.10762

20. Kohmoto, M., B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett., Vol. 58, 2436, 1987.
doi:10.1103/PhysRevLett.58.2436

21. Sheng, P., Scattering and Localization of Classical Waves in Random Media , World Scientific, Singapore, 1990.

22. Gellermann, W., M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in Fibonacci dielectric multilayers," Phys. Rev. Lett., Vol. 72, 633, 1994.
doi:10.1103/PhysRevLett.72.633

23. Dal Negro, L., C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett., Vol. 90, 055501, 2003.
doi:10.1103/PhysRevLett.90.055501

24. Gumbs, G. and M. K. Ali, "Dynamical maps, cantor spectra, and localization for Fibonacci and related quasiperiodic lattices," Phys. Rev. Lett., Vol. 60, 1081, 1988.
doi:10.1103/PhysRevLett.60.1081

25. Nori, F. and J. P. Rodriguez, "Acoustic and electronic properties of one-dimensional quasicrystals," Phys. Rev. B, Vol. 34, 2207, 1986.
doi:10.1103/PhysRevB.34.2207

26. Fujiwara, T., M. Kohmoto, and T. Tokihiro, "Multifractal wave functions on a Fibonacci lattice," Phys. Rev. B, Vol. 40, 7413, 1989.
doi:10.1103/PhysRevB.40.7413

27. Lusk, D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal ," Opt. Commun., Vol. 198, 273-279, 2001.
doi:10.1016/S0030-4018(01)01531-0

28. Cojocaru, E., "Omnidirectional reflection from finite periodic and Fibonacci quasi-periodic multilayers of alternating isotropic and birefringent thin films," Appl. Opt., Vol. 41, 747, 2002.
doi:10.1364/AO.41.000747

29. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures ," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

30. Khalaj-Amirhosseini, M., "Analysis of periodic and aperiodic coupled nonuniform transmission lines using the Fourier series expansion," Progress In Electromagnetics Research, Vol. 65, 15-26, 2006.

31. Guida, G., "Numerical studies of disordered photonic crystals," Progress In Electromagnetics Research, Vol. 41, 107-131, 2003.
doi:10.2528/PIER02010805

32. Lakhtakia, A. and C. M. Krowne, "Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity material (alias left-handed material)," Optik, Vol. 114, 305, 2003.