Vol. 13
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-02-15
Evaluation of a Ni-Zn Ferrite for Use in Temperature Sensors
By
Progress In Electromagnetics Research Letters, Vol. 13, 103-112, 2010
Abstract
This work investigates the variation of the real part of the complex magnetic permeability of a Ni-Zn ferrite for application to temperature sensors. Ferrite samples were fabricated by means of the conventional ceramic method. Zinc, nickel and iron oxides were used as raw materials. The samples were sintered at 1200, 1300, and 1400oC. The complex magnetic permeability of the samples was measured at temperatures ranging from -40oC to +50oC. The complex magnetic permeability of the samples was analyzed in the 100 kHz--100 MHz frequency range, and the temperature sensitivity of the magnetic permeability (μr'/T) was analyzed at 100 kHz. The magnetic permeability variation of the ferrite permits to use it as a temperature transducer with a maximum temperature sensitivity of about -119oC-1. The highest magnitudes of temperature sensitivity occurred between +30oC and +50oC. Therefore, the ferrite could be sensitive enough to allow temperature measurements at the human body temperature level. The results indicate that the temperature range of maximum temperature sensitivity of the ferrite may be adjusted by means of appropriate selection of the fabrication parameters.
Citation
Vera Lucia Othero de Brito, Luiz Fernando Alves De Almeida, Anderson Kenji Hirata, and Antonio Carlos da Cunha Migliano, "Evaluation of a Ni-Zn Ferrite for Use in Temperature Sensors," Progress In Electromagnetics Research Letters, Vol. 13, 103-112, 2010.
doi:10.2528/PIERL09120708
References

1. Brito, V. L. O., A. C. C. Migliano, L. V. Lemos, and F. C. L. Melo, "Ceramic processing route and characterization of a Ni-Zn ferrite for application in a pulsed-current monitor," Progress In Electromagnetics Research, Vol. 91, 303-318, 2009.
doi:10.2528/PIER09031603

2. Sedlar, M., V. Matejec, and I. Paulicka, "Optical fibre magnetic field sensors using ceramic magnetostrictive jackets," Sens. Act. A, Vol. 84, 297-302, 2000.
doi:10.1016/S0924-4247(00)00403-9

3. Bienkowski, A. and R. Szewczyc, "The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors," Sens. Act. A, Vol. 113, 270-276, 2004.
doi:10.1016/j.sna.2004.01.010

4. Zhang, G., C. Li, F. Cheng, and J. Chen, "ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption," Sens. Act. B, Vol. 120, 403-410, 2007.
doi:10.1016/j.snb.2006.02.034

5. Arshak, K. and I. Gaidan, "Development of a novel gas sensor based on oxide thick films," Mat. Sci. Eng. B, Vol. 118, No. 1--3, 44-49, 2005.
doi:10.1016/j.mseb.2004.12.061

6. Shin, H.-S., Ferrite device for sensing temperature, U.S. Patent No. 5,775,810, 1998.

7. Kim, Y. H., S. Hashi, K. Ishiyama, K. I. Arai, and M. Inoue, "Remote temperature sensing system using reverberated magnetic flux," IEEE Trans. Magn., Vol. 36, No. 5, 3643-3645, 2000.
doi:10.1109/20.908927

8. Osada, H., K. Seki, H. Matsuki, S. Kikuchi, and K. Murakami, "Temperature-sensitive magnetic thin-film for micro sensor," IEEE Trans. Magn., Vol. 31, No. 6, 3164-3166, 1995.
doi:10.1109/20.490315

9. Osada, H., S. Chiba, H. Oka, H. Hatafuku, N. Tayama, and K. Seki, "Non-contact magnetic temperature sensor for biochemical applications," J. Magn. Magn. Mater., Vol. 272--276, e1761-e1762, 2004.
doi:10.1016/j.jmmm.2003.12.989

10. Valenzuela, R., Magnetic Ceramics, 131, Cambridge University Press, 1994.

11. Cedillo, E., J. Ocampo, V. Rivera, and R. Valenzuela, "An apparatus for the measurement of initial magnetic permeability as a function of temperature," J. Phys. E: Sci. Inst., Vol. 13, No. 4, 383-386, 1980.
doi:10.1088/0022-3735/13/4/005

12. Brito, V. L. O., Selecao, elaboracao e caracterizacao de ferritas Ni-Zn para aplicacao em monitores de corrente pulsada, Ph.D. Thesis, 38, Sao Jose dos Campos, Instituto Tecnologico de Aeronautica, 2007.

13. Naoe, M., R. Takahashi, T. Omura, Y. Hotta, T. Sato, K. Yamasawa, and Y. Miura, "Basic investigation of microtemperature sensor by means of a novel transmission-line technique using a temperature-sensitive Li-Zn-Cu ferrite substrate," J. Magn. Magn. Mater., Vol. 320, e949-e953, 2008.
doi:10.1016/j.jmmm.2008.04.072

14. Cortes, A. L., A. C. C. Migliano, V. L. O Brito, and A. J. F. Orlando, "Practical aspects of the characterization of ferrite absorber using one-port device at RF frequencies," PIERS Proceedings, 683-687, Beijing, China, March 26--30, 2007.

15. Verma, A. and R. Chatterjee, "Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn-Zn and Ni-Zn ferrites synthesized by the citrate precursor technique," J. Magn. Magn. Mater., Vol. 306, 313-320, 2006.
doi:10.1016/j.jmmm.2006.03.033

16. Gul, I. H., W. Ahmed, and A. Maqsood, "Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route," J. Magn. Magn. Mater., Vol. 320, 270-275, 2008.
doi:10.1016/j.jmmm.2007.05.032

17. Gignoux, D. and M. Schlenker, Magnetism: Fundamentals, 129, Springer, 2005.

18. Goldman, A., Modern Ferrite Technology, 398, Springer, 2006.