Vol. 13
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-01-13
Design of Dual-Band Microstrip Reflectarray Using Single Layer Multiresonance Double Cross Elements
By
Progress In Electromagnetics Research Letters, Vol. 13, 67-74, 2010
Abstract
A multiresonance double cross element is used to design a dual-band reflectarray with dual linear polarization. The proposed element has a single conductive layer structure which makes it easy to manufacture. The results presented in this paper show that the mutual effect between the elements of the two bands is negligible. Hence, it is easy to achieve the phase compensation for each band separately. The simulated and measured results for an element designed to cover the X- and K-bands have confirmed the suitability of the proposed element to build a dual-band reflectarray.
Citation
Amin M. Abbosh, "Design of Dual-Band Microstrip Reflectarray Using Single Layer Multiresonance Double Cross Elements," Progress In Electromagnetics Research Letters, Vol. 13, 67-74, 2010.
doi:10.2528/PIERL09111612
References

1. Huang, J. and J. Encinar, Reflectarray Antennas, IEEE Press, 2008.

2. Li, H., B. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
doi:10.1163/156939307783239528

3. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
doi:10.2528/PIERB07120405

4. Venneri, F., S. Costanzo, and G. Di Massa, "Transmission line analysis of aperture-coupled reflectarrays," Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008.

5. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1527-1537, 2008.
doi:10.1163/156939308786390247

6. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506

7. Huang, J., "Mucrostrip reflectarray," Proc. IEEE Antennas and Propagation Symposium, 612-615, Canada, 1991.

8. Kelkar, A., "Conformal phased reflecting surfaces," Proc. IEEE National Radar Conference, 58-62, Los Angeles, 1991.

9. Huang, J. and R. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas and Propagation, Vol. 46, 650-656, 1998.
doi:10.1109/8.668907

10. Encinar, J., "Design of a dual-frequency reflectarray using microstrip stacked patches of variable size," Electronics Letters, Vol. 32, 1049-1050, 1996.
doi:10.1049/el:19960710

11. Hsu, S. and K. Chang, "A new dual-band reflectarray configuration," Proc. IEEE Antennas and Propagation Symposium, San Diego, 2008.

12. Chaharmir, M., J. Shaker, and N. Gagnon, "Broadband dual-band linear orthogonal polarisation reflectarray," Electronics Letters, Vol. 45, 13-14, 2009.
doi:10.1049/el:20092679

13. Chaharmir, M., J. Shaker, and H. Legay, "Broadband design of a single layer large reflectarray using multi cross loop elements," IEEE Trans. Antennas and Propagation, Vol. 57, 3363-3366, 2009.
doi:10.1109/TAP.2009.2029600

14. Bialkowski, M., A. Abbosh, and K. Sayidmarie, "Investigations into phasing characteristics of printed single and double cross elements for use in a single layer microstrip reflectarray," Proc. IEEE Antennas and Propagation Symposium, San Diego, 2008.

15. Abbosh, A., "Dual-band single layer microstrip reflectarray using multiresonance double cross elements," Asia-Pacific Microwave Conference, Hong Kong, 2008.

16. Abbosh, A., "Effect of the conductive coating thickness on performance of the microstrip reflectarray," Microwave and Optical Tech. Letters, Vol. 51, 1288-1290, 2009.
doi:10.1002/mop.24296