Vol. 99
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-27
Numerical Analysis of Apodized Fiber Bragg Gratings Using Coupled Mode Theory
By
Progress In Electromagnetics Research, Vol. 99, 289-306, 2009
Abstract
In this paper, the coupled mode theory is used to analyze apodized fiber Bragg gratings (FBGs). Since the profile of gratings varies with the propagation distance, the coupled mode equations (CMEs) of apodized FBGs are solved by the fourth-order Runge-Kutta method (RKM) and piecewise-uniform approach (PUA). We present two discretization techniques of PUA to analyze the apodization profile of gratings. A uniform profile FBG can be expressed as a system of first-order ordinary differential equations with constant coefficients. The eigenvalue and eigenvector technique as well as the transfer matrix method is applied to analyze apodized FBGs by using PUAs. The transmission and reflection efficiencies calculated by two PUAs are compared with those computed by RKM. The results show that the order of the local truncation error of RKM is h-4, while both PUAs have the same order of the local truncation error of h-2. We find that RKM, capable of providing fast-convergent and accurate numerical results, is a preferred method in solving apodized FBG problems.
Citation
Nai-Hsiang Sun, Jiun-Jie Liau, Yean-Woei Kiang, Shih-Chiang Lin, Ru-Yen Ro, Jung-Sheng Chiang, and Hung-Wen Chang, "Numerical Analysis of Apodized Fiber Bragg Gratings Using Coupled Mode Theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704
References

1. Erdogan, T., "Fiber grating spectra," J. Lightwave Technol., Vol. 15, 1277-1294, 1997.
doi:10.1109/50.618322

2. Erdogan, T., "Cladding-mode resonances in short- and long-period fiber grating filters," J. Opt. Soc. Am. A, Vol. 14, 1760-1773, 1997.
doi:10.1364/JOSAA.14.001760

3. He, M., J. Jiang, J. Han, and T. Liu, "An experiment research on extend range of Based on fiber Bragg grating demodulation based on CWDM," Progress In Electromagnetics Research Letters, Vol. 6, 115-121, 2009.
doi:10.2528/PIERL08123105

4. Ennser, K., M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron., Vol. 34, 770-778, 1998.
doi:10.1109/3.668763

5. Lima, M. J. N., A. L. J. Teixeira, and J. R. F. Da Rocha, "Optimization of apodized fiber grating filters for WDM systems," Proc. of IEEE LEOS Annual Meeting, ThZ2, 876-877, San Francisco, USA, 1999.

6. Rebola, J. L. and A. V. T. Cartaxo, "Performance optimization of gaussian apodized fiber Bragg grating filter in WDM systems," IEEE Journal of Lightwave Technology, Vol. 20, 1537-1544, 2002.
doi:10.1109/JLT.2002.800300

7. Moghimi, M. J., H. Ghafoori-Fard, and A. Rostami, "Analysis and design of all-optical switching in apodized and chirped Bragg gratings," Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008.
doi:10.2528/PIERB08041303

8. Sha, W. E. I., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302

9. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitance and homogenization methods," Progress In Electromagnetics Research Letters,, Vol. 3, 123-131, 2008.
doi:10.2528/PIERL08021802

10. Hattori, H. T., "Fractal-like square lattices of air holes," Progress In Electromagnetics Research Letters, Vol. 4, 9-16, 2008.
doi:10.2528/PIERL08040705

11. Chang, H.-W. and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations," Progress In Electromagnetics Research, Vol. 78, 329-347, 2008.
doi:10.2528/PIER07091002

12. Chang, H.-W. and M.-H. Sheng, "Errata for the paper entitled `dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations'," Progress In Electromagnetics Research C, Vol. 8, 195-197, 2009.
doi:10.2528/PIERC09041001

13. Chang, H.-W., Y.-H. Wu, S.-M. Lu, W.-C. Cheng, and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Numerical investigation," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.
doi:10.2528/PIER09091402

14. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102

15. Feced, R., M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron., Vol. 35, 1105-1115, 1999.
doi:10.1109/3.777209

16. Rostami, A. and A. Yazdanpanah-Goharrizi, "A new method for classification and identification of complex fiber Bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 1105-1115, 2007.

17. Prokopovich, D. V., A. V. Popov, and A. V. Vinogradov, "Analytical and numerical aspects of Bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
doi:10.2528/PIERB08031221

18. Watanabe, K., "Fast converging and widely applicable formulation of the differential theory for anisotropic gratings," Progress In Electromagnetics Research, Vol. 48, 279-299, 2004.
doi:10.2528/PIER04032501

19. Rojas, J. A. M., J. Alpuente, P. Lopez-Espi, and P. Garcia, "Accurate model of electromagnetic wave propagation unidimensional photonic crystals with defects," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1037-1051, 2007.

20. Molinet, F. A., "Plane wave diffraction by a strongly elongated object illuminated in the paraxial direction," Progress In Electromagnetics Research B, Vol. 6, 135-151, 2008.
doi:10.2528/PIERB08031211

21. Chang, K. C., V. Shah, and T. Tamir, "Scattering and guiding of waves by dielectric gratings with arbitrary profiles," J. Opt. Soc. Amer., Vol. 70, 804-813, 1980.