Vol. 99
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-01
Effect of Temperature and Multiple Scattering on Rain Attenuation of Electromagnetic Waves by a Simple Spherical Model
By
Progress In Electromagnetics Research, Vol. 99, 339-354, 2009
Abstract
Specific rain attenuation is discussed from the viewpoint of numerical solution for scattering and absorption of electromagnetic waves related to dielectric spheres. Special attention is paid to the quantitative evaluations considering the change of temperature and the existence of multiple scattering effect. The analysis is based on the set of Stratton's vector spherical wave functions and its addition theorem, which lead to the simultaneous linear equations for the expansion coefficients with adaptively selected truncation numbers. Computed extinction cross sections lead directly to the specific rain attenuation, where the Weibull raindrop distribution model is used. It is discussed how the dependence of the permittivity of water on temperature and frequency affects the attenuation property. Furthermore, the effect of multiple scattering is evaluated in terms of the root mean square of attenuation deviation from the simple superposition of single scattering (Mie's) coefficients. Contrary to general belief, this deviation is the highest at around the boundary between microwave and millimeter wave bands.
Citation
Eko Setijadi, Akira Matsushima, Naoki Tanaka, and Gamantyo Hendrantoro, "Effect of Temperature and Multiple Scattering on Rain Attenuation of Electromagnetic Waves by a Simple Spherical Model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609
References

1. Brussaard, G. and P. A. Watson, Atmospheric Modelling and Millimetre Wave Propagation, Sec. 4.2, Chapman & Hall, London, 1994.

2. Lin, D.-P. and H.-Y. Chen, "An empirical formula for the prediction of rain attenuation in frequency range 0.6--100 GHz," IEEE Trans. Antennas Propagat., Vol. 50, No. 4, 545-551, 2002.
doi:10.1109/TAP.2002.1003391

3. Zhu, L., X.-G. Li, and G.-W. Lou, "Analysis of characters of submillimeter wave attenuation by rain medium," Microwave Opt. Tech. Lett., Vol. 50, No. 4, 1025-1028, 2008.
doi:10.1002/mop.23286

4. Bahrami, M. and J. Rashed-Mohassel, "An exact solution of coherent wave propagation in rain medium with realistic raindrop shapes," Progress In Electromagnetics Research, Vol. 79, 107-118, 2008.

5. Oguchi, T., "Scattering properties of Pruppacher-and-Pitter form raindrops and cross polarization due to rain: Calculation at 11, 13, 19.3, and 34.8 GHz," Radio Science, Vol. 12, No. 1, 41-51, 1977.
doi:10.1029/RS012i001p00041

6. Ishimaru, A., "Multiple scattering calculations of rain effects," Radio Science, Vol. 17, No. 6, 1425-1433, 1982.
doi:10.1029/RS017i006p01425

7. Tsolakis, A. I. and W. L. Stutzman, "Multiple scattering of electromagnetic waves by rain," Radio Science, Vol. 17, No. 6, 1495-1502, 1982.
doi:10.1029/RS017i006p01495

8. Rogers, D. V. and R. L. Olsen, "Multiple scattering in coherent radiowave propagation through rain," COMSAT Technical Review, Vol. 13, 385-401, 1983.

9. Pruppacher, H. R. and R. L. Pitter, "A semi-empirical determination of the shape of cloud and rain drops," J. Atomos. Sci., Vol. 28, No. 1, 86-94, 1971.
doi:10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2

10. Bruning, J. H. and Y. T. Lo, "Multiple scattering of EM waves by spheres part I --- Multipole expansion and ray-optical solutions," IEEE Trans. Antennas Propag., Vol. 19, No. 3, 378-390, 1971.
doi:10.1109/TAP.1971.1139944

11. Hamid, A.-K., I. R. Ciric, and M. Hamid, "Electromagnetic scattering by an arbitrary configuration of dielectric spheres," Can. J. Phys., Vol. 68, No. 12, 1419-1428, 1990.

12. Matsushima, A., Y. Momoka, M. Ohtsu, and Y. Okuno, "Efficient numerical approach to electromagnetic scattering from three-dimensional periodic array of dielectric spheres using sequential accumulation," Progress In Electromagnetics Research, Vol. 69, 305-322, 2007.
doi:10.2528/PIER06123002

13. Stratton, J. A., Electromagnetic Theory, Ch. 7, McGraw-Hill, NY, 1941.

14. Cruzan, O. R., "Translation addition theorem for spherical vector wave functions," Quart. J. Appl. Math., Vol. 20, 33-39, 1962.

15. Marshall, J. S. and W. M. Palmer, "The distribution of raindrops with size," J. Meteorology, Vol. 5, 165-166, 1948.

16. Atlas, D. and C. W. Ulbrich, "The physical basis for attenuation rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods," J. Rech. Atmos., Vol. 8, 275-298, 1974.

17. Sekine, M., C.-D. Chen, and T. Musha, "Rain attenuation from log-normal and weibull raindrop-size distributions," IEEE Trans. Antennas Propagat., Vol. 35, No. 3, 358-359, 1987.
doi:10.1109/TAP.1987.1144099

18. Utsunomiya, T. and M. Sekine, "Rain attenuation at millimeter and submillimeter wavelengths," Int. J. Infrared Millimeter Waves, Vol. 26, No. 6, 905-920, 2005.
doi:10.1007/s10762-005-5662-5

19. Liebe, H. J., G. A. Hufford, and T. Manabe, "A Model for the complex permittivity of water at frequencies below 1 THz," Int. J. Infrared Millimeter Waves, Vol. 12, No. 7, 659-675, 1991.
doi:10.1007/BF01008897

20. Harrington, R. F., Time-harmonic Electromagnetic Fields, Ch. 3, McGraw-Hill, NY, 1961.

21., ITU-R P.838-3, "Specific attenuation model for rain for use in prediction methods," May 2005.

22. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-812, 1965.

23. Ohtsu, M., Y. Okuno, A. Matsushima, and T. Suyama, "A combination of up- and down-going Floquet modal functions used to describe the field inside grooves of a deep grating," Progress In Electromagnetics Research, Vol. 64, 293-316, 2006.
doi:10.2528/PIER06071401