Vol. 99
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-26
Tunable Lateral Shift through Nonlinear Composites of Nonspherical Particles
By
Progress In Electromagnetics Research, Vol. 99, 273-287, 2009
Abstract
The Goos-Hanchen (GH) shift of the reflected waves from nonlinear nanocomposites of interleaved nonspherical metal and dielectric particles are investigated both theoretically and numerically. First, based on spectral representation theory and effective medium approximation, we derive the field-dependent effective permittivity of the nonlinear composites. Then the stationary phase method is adopted to study the GH shifts from nonlinear composites. It is found that for a given volume fraction, there exist two critical polarization factors Lc1 and Lc2, and bistable GH shifts appear only when L < Lc1 or L < Lc2. Moreover, both giant negative and positive GH shifts accompanied with large reflectivity are found, hence they can be easily observed in experiments. The reversal of the GH shift may be controlled by adjusting both the incident angle and the applied field. Numerical simulations for Gaussian-type incident beam are performed, and good agreement between simulated data and theoretical ones is found especially for large waist width.
Citation
Dongliang Gao, and Lei Gao, "Tunable Lateral Shift through Nonlinear Composites of Nonspherical Particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404
References

1. Goos, F. and H. Hanchen, "Ein neuer und fundamentaler versuch zur totalreflexion," Ann. Phys., Vol. 436, 333-346, 1947.
doi:10.1002/andp.19474360704

2. Goos, F. and H. Hanchen, "Neumessung des strahlversetzungseffektes bei totalreflexion," Ann. Phys., Vol. 440, 251-252, 1949.
doi:10.1002/andp.19494400312

3. Sakata, T., H. Togo, and F. Shimokawa, "Reflection-type 2 x 2 optical waveguide switch using the Goos-Hanchen shift effect," Appl. Phys. Lett., Vol. 76, 2841-2843, 2000.
doi:10.1063/1.126491

4. Chen, C. W., W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt., Vol. 46, 5347-5351, 2007.
doi:10.1364/AO.46.005347

5. Artmann, K., "Berechnung der seitenversetzung des totalreflektierten strahles," Ann. Phys., Vol. 437, No. 1, 87-102, 1948.
doi:10.1002/andp.19484370108

6. Bretenaker, F., A. L. Floch, and L. Dutriaux, "Direct measurement of the optical Goos-Hanchen effect in lasers," Phys. Rev. Lett., Vol. 68, 931-933, 1992.
doi:10.1103/PhysRevLett.68.931

7. Emile, O., T. Galstyan, A. Le Floch, and F. Bretenaker, "Measurement of the nonlinear Goos-Hanchen effect for Gaussian optical beams," Phys. Rev. Lett., Vol. 75, 1511-1513, 1995.
doi:10.1103/PhysRevLett.75.1511

8. Wild, W. J. and C. L. Giles, "Goos-Hanchen shifts from absorbing media," Phys. Rev. A, Vol. 25, 2099-2101, 1982.
doi:10.1103/PhysRevA.25.2099

9. Lai, H. M. and S. W. Chan, "Large and negative Goos-Hanchen shift near the brewster dip on reflection from weakly absorbing media," Opt. Lett., Vol. 27, 680-682, 2002.
doi:10.1364/OL.27.000680

10. Lai, H. M., S. W. Chan, and W. H. Wong, "Nonspecular effects on reflection from absorbing media at and around Brewster's dip," J. Opt. Soc. Am. A, Vol. 23, 3208-3216, 2006.
doi:10.1364/JOSAA.23.003208

11. Wang, L. G. and S. Y. Zhu, "Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals," Opt. Lett., Vol. 31, 101-103, 2006.
doi:10.1364/OL.31.000101

12. Li, C. F., "Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects," Phys. Rev. Lett., Vol. 91, 133903, 2003.
doi:10.1103/PhysRevLett.91.133903

13. Leung, P. T., C. W. Chen, and H. P. Chiang, "Large negative Goos-Hanchen shift at metal surfaces," Opt. Commun., Vol. 276, 206-208, 2007.
doi:10.1016/j.optcom.2007.04.019

14. Merano, M., A. Aiello, G. W. Hooft, M. P. Van Exter, E. R. Eliel, and J. P. Woerdman, "Observation of Goos-Hanchen shifts in metallic reflection," Opt. Express, Vol. 15, 15928-15934, 2007.
doi:10.1364/OE.15.015928

15. Depine, R. A. and N. E. Bonomo, "Goos-Hanchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces," Optik, Vol. 103, 37-41, 1996.

16. Wang, F. and A. Lakhtakia, "Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films," Opt. Commun., Vol. 235, 107-132, 2004.
doi:10.1016/j.optcom.2004.02.050

17. Dong, W. T., L. Gao, and C. W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 104, 255-268, 2009.
doi:10.2528/PIER08122002

18. Tamir, T. and H. L. Bertoni, "Lateral displacement of optical beams at multilayered and periodic structures," J. Opt. Soc. Am., Vol. 61, 1397-1413, 1971.
doi:10.1364/JOSA.61.001397

19. Felbacq, D. and R. Smaali, "Bloch modes dressed by evanescent waves and the generalized Goos-Hanchen effect in photonic crystals," Phys. Rev. Lett., Vol. 92, 193902, 2004.
doi:10.1103/PhysRevLett.92.193902

20. Wang, L. G. and S. Y. Zhu, "Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals," Opt. Lett., Vol. 31, 101-103, 2006.
doi:10.1364/OL.31.000101

21. Berman, P. R., "Goos-Hanchen shift in negatively refractive media," Phys. Rev. E, Vol. 66, 067603, 2002.
doi:10.1103/PhysRevE.66.067603

22. Lakhtakia, A., "On planewave remittances and Goos-Hanchen shifts of planar slabs with negative real permittivity and permeability," Electromagnetics, Vol. 23, 71-75, 2003.
doi:10.1080/02726340390159432

23. Shadrivov, I. V., A. A. Zharov, and Y. S. Kivshar, "Giant Goos-Hanchen effect at the reflection from left-handed metamaterials," Appl. Phys. Lett., Vol. 83, 2713-2715, 2003.
doi:10.1063/1.1615678

24. Lima, F., T. Dumelow, E. L. Albuquerque, and J. A. P. Da Costa, "Power flow associated with the Goos-Hanchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet," Phys. Rev. B, Vol. 79, 155124, 2009.
doi:10.1103/PhysRevB.79.155124

25. Peccianti, M., A. Dyadyusha, M. Kaczmarek, and G. Assanto, "Tunable refraction and reflection of self-confined light beams," Nat. Phys., Vol. 2, 737-742, 2006.
doi:10.1038/nphys427

26. Hou, P., Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, "Giant bistable shifts for one-dimensional nonlinear photonic crystals," Phys. Rev. A, Vol. 75, 045802, 2007.
doi:10.1103/PhysRevA.75.045802

27. Zhou, H. C., X. Chen, P. Hou, and C. F. Li, "Giant bistable lateral shift owing to surface-plasmon excitation in kretschmann configuration with a Kerr nonlinear dielectric," Opt. Lett., Vol. 33, 1249-1251, 2008.
doi:10.1364/OL.33.001249

28. Wang, L. G., M. Ikram, and M. S. Zubairy, "Control of the Goos-Hanchen shift of a light beam via a coherent driving field," Phys. Rev. A, Vol. 77, 023811, 2008.
doi:10.1103/PhysRevA.77.023811

29. Wang, Y., Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, "Electric control of spatial beam position based on the Goos-Hanchen effect," Appl. Phys. Lett., Vol. 93, 091103, 2008.
doi:10.1063/1.2977873

30. Chen, X., M. Shen, Z. F. Zhang, and C. F. Li, "Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals," J. Appl. Phys., Vol. 104, 123101, 2008.
doi:10.1063/1.3041423

31. Shi, L. H., L. Gao, S. L. He, and B. W. Li, "Superlens from metal-dielectric composites of nonspherical particles," Phys. Rev. B, Vol. 76, 045116, 2007.
doi:10.1103/PhysRevB.76.045116

32. Shi, L. H. and L. Gao, "Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B, Vol. 77, 195121, 2008.
doi:10.1103/PhysRevB.77.195121

33. Bergman, D. J., "The dielectric constant of a composite material --- A problem in classical physics," Phys. Rev. B, Vol. 43, 377-407, 1978.

34. Ma, H. R., R. F. Xiao, and P. Sheng, "Third-order optical nonlinearity enhancement through composite microstructures," J. Opt. Soc. Am. B, Vol. 15, 1022-1029, 1998.
doi:10.1364/JOSAB.15.001022

35. Gao, L., L. P. Gu, and Z. Y. Li, "Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles," Phys. Rev. E, Vol. 68, 066601, 2003.
doi:10.1103/PhysRevE.68.066601

36. Bruggman, D. A. G., "Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen," Ann. Phys., Vol. 416, 636-664, 1935.
doi:10.1002/andp.19354160705

37. Agarwal, G. S. and S. Dutta Gupta, "T-matrix approach to the nonlinear susceptibilities of heterogeneous media," Phys. Rev. A, Vol. 38, 5678-5687, 1988.
doi:10.1103/PhysRevA.38.5678

38. Day, A. R. and M. F. Thorpe, "The spectral function of random resistor networks," J. Phys.: Condens. Matter, Vol. 8, 4389-4409, 1996.
doi:10.1088/0953-8984/8/24/008

39. Russell, J. G. and W. B. Robert, "Optical properties of nanostructured optical materials," Chem. Mater., Vol. 8, 1807-1819, 1996.

40. Uchida, K., S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, and A. J. Ikushima, "Optical nonlinearities of a high concentration of small metal particles dispersed in glass: Copper and silver particles," J. Opt. Soc. Am. B, Vol. 11, 1236-2143, 1994.
doi:10.1364/JOSAB.11.001236

41. Hou, P., Y. Chen, J. Shi, M. Shen, X. Chen, and Q. Wang, "Anomalous bistable shift for a one-dimensional photonic crystal doped with a subwavelength layer and a nonlinear layer," Europhys. Lett., Vol. 81, 64003, 2008.
doi:10.1209/0295-5075/81/64003

42. Yin, X. B., L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, "Large positive and negative lateral optical beam displacements due to surface plasmon resonance," Appl. Phys. Lett., Vol. 85, 372-374, 2004.
doi:10.1063/1.1775294

43. Wang, L. G. and S. Y. Zhu, "Large positive and negative Goos-Hanchen shifts from a weakly absorbing left-handed slab," J. Appl. Phys., Vol. 98, 043522, 2005.
doi:10.1063/1.2034084