Vol. 9
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-11-20
Scattering by Jacket Structures Analysis via the Extended Method of Auxiliary Sources Emas
By
Progress In Electromagnetics Research M, Vol. 9, 199-214, 2009
Abstract
This paper establishes the extension of the method of auxiliary sources EMAS for the purpose of modeling the electromagnetic scattering response by jacket cylindrical structures constituted by a finite number of dielectric eccentric cylindrical inclusions embedded in a host dielectric one. Appropriate boundary conditions mixed with judicious decomposed domains leads to the prediction of the backscattering cross section. The algorithm also integrates the global electromagnetic coupling between the inclusions. The EMAS is validated by varying the inner cylinders repartitions and fine-tuning the electric permittivity according to different geometries. The EMAS level of accuracy compared with the indirect matching mode method IMM reveals a good agreement between the numerical computation results.
Citation
Hichem Naamen, and Taoufik Aguili, "Scattering by Jacket Structures Analysis via the Extended Method of Auxiliary Sources Emas," Progress In Electromagnetics Research M, Vol. 9, 199-214, 2009.
doi:10.2528/PIERM09101102
References

1. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, 1970.

2. Bussey, H. B. and J. H. Richmond, "Scattering by a lossy dielectric circular cylindrical multilayers: Numerical values," IEEE Transactions on Antennas and Propagation, Vol. 23, 723-725, 1975.
doi:10.1109/TAP.1975.1141146

3. Kishk, A. A., R. P. Parrikar, and A. Z. Elsherbeni, "Electromagnetic scattering from an eccentric multilayered circular cylinder ," IEEE Transactions on Antennas and Propagation, Vol. 40, 295-303, 1992.
doi:10.1109/8.135472

4. Stratigaki, L. G., M. P. Ioannidou, and D. P. Chrissoulidis, "Scattering from a dielectric cylinder with multiple eccentric cylindrical dielectric inclusions," IEEE Proc. Microw. Antannas Propag., Vol. 143, No. 6, 505-511, 1996.

5. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, Chapter 1, Taylor and Francis Group, 2006.

6. Kupradze, V., "About approximates solution mathematical physics problem," Success of Mathematical Sciences, Vol. 22, No. 2, 59-107, 1967.

7. Fikioris, G., "On two types of convergence in the method of auxiliary sources," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, July 2006.

8. Anastassiu, H., "Error estimation of the method of auxiliary sources (MAS) for scattering from an impedance circular cylinder," Progress In Electromagnetics Research, Vol. 52, 109-128, 2005.
doi:10.2528/PIER04072101

9. Kaklamani, D. I., "Aspects of the method of auxiliary sources (MAS) in computational electromagnetic," IEEE Antennas and Propagation Magazine, Vol. 44, No. 3, June 2002.

10. Hichem, N. and T. Aguili, "Analysis of scattering from a finite linear array of dielectric cylinders using the method of auxiliary sources," PIERS Proceeding, 743-746, Beijing, China, March 23--27, 2009.

11. Hichem, N. and T. Aguili, "Analysis of two-dimensional scattering by a periodic array of conducting cylinders using the method of auxiliary sources," PIERS Online, Vol. 4, No. 5, 521-525, 2008.
doi:10.2529/PIERS071219122321

12. Hichem, N. and T. Aguili, "Modeling the electromagnetic scattering from a dielectrically filled groove using the method of auxiliary sources," PIERS Proceeding, 858-860, Beijing, China, March 23--27, 2009.

13. Hichem, N. and T. Aguili, "Scatering by multilayered structures using the extended method of auxiliary sources," Progress In Electromagnetic Research B, Vol. 15, 133-150, 2009.
doi:10.2528/PIERB09042307

14. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, Institution of Engineering and Technology, March 1, 1995.

15. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901

16. Toyama, H., K. Yasumoto, and T. Iwasaki, "Electromagnetic scattering from a dielectric cylinder with multiple eccentric cylindrical inclusions," Progress In Electromagnetics Research, Vol. 40, 113-129, 2003.
doi:10.2528/PIER02062102

17. Harrington, R. F., Time Harmonic Electromagnetic Fields, 2nd edition, 130, 202, 232, Wiley Interscience, August 30, 2001.

18. Elsherbeni, A. Z. and A. A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 1, January 1992.
doi:10.1109/8.123363

19. Anastassiu, H. T. and D. I. Kaklamani, "Electromagnetic scattering analysis of coated conductors with edges using the method of auxiliary sources (MAS) in conjunction with the standard impedance boundary condition (SIBC)," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 1, January 2002.
doi:10.1109/8.992562

20. Avdikos, G. K. and H. T. Anastassiu, "Computational cost estimations for three methods of applied electromagnetics (MoM, MAS, MMAS)," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, February 2002.