Vol. 12
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-11-09
A Compact Balun Based on Microstrip EBG Cell and Interdigital Capacitor
By
Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009
Abstract
A novel compact balun (balanced-to-unbalanced) that consists of a low-pass network served by a microstrip electromagnetic bandgap (EBG) cell and a high-pass π-network formed with an interdigital capacitor is presented. This proposed approach can effectively operate the compact balun without the use of λ/4 microstrip lines to reduce the circuit area over 50% compared to the conventional Marchand balun. The core dimension of the compact balun is 0.74 cm x 0.7 cm. The planar structure enables an efficient circuit design in printed circuit boards (PCB) without using any bonding wires, defected ground structures (DGS), or surface mounted devices (SMD). A compact balun operating in the 3 GHz band has been implemented in a FR-4 PCB. From the measured results, the return loss of the input port is better than 15 dB over the band from 2.6 to 4 GHz. The amplitude and phase imbalances are less than 1.4 dB and 3° with the 20% operational bandwidth ranging from 2.7 to 3.3 GHz, respectively.
Citation
Chih-Ming Lin, Chun-Chi Su, Shih-Han Hung, and Yeong-Her Wang, "A Compact Balun Based on Microstrip EBG Cell and Interdigital Capacitor," Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009.
doi:10.2528/PIERL09092904
References

1. Li, X., L. Yang, S.-X. Gong, and Y.-J. Yang, "Dual-band and wideband design of a printed dipole antenna integrated with dual-band balun," Progress In Electromagnetics Research Letters, Vol. 6, 165-174, 2009.
doi:10.2528/PIERL08120504

2. Chiu, J. C., C. P. Chang, M. P. Houng, and Y. H. Wang, "A 12-36 GHz PHEMT MMIC balanced frequency tripler," IEEE Microw. Wireless Compon. Lett., Vol. 16, 19-21, June 2006.
doi:10.1109/LMWC.2005.861356

3. Marchand, N., "Transmission line conversion transformers," Electronics, Vol. 17, 142-145, December 1942.

4. Sun, J. S. and G. Y. Chen, "A novel design of the planar coupled line balun," IEEE Microwave and Millimeter Wave Technology Proceedings, 1117-1120, August 2002.

5. Lin, Y. S. and C. H. Chen, "Novel lumped-element uniplanar transitions," IEEE Trans. Microw. Theory Tech., Vol. 49, 2322-2330, December 2001.
doi:10.1109/22.971616

6. Kim, K. S., C. S. Kim, I. S. Song, and D. Ahn, "A novel balun with vertically periodic defected ground structure," IEEE Region 10 Conf., 1-4, November 2006.

7. Alley, G. D., "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 18, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407

8. Bahl, I. and P. Bhartia, Microwave Solid State Circuit Design, 2nd Ed., Wiley, 2003.

9. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-D microstrip PBG cell," IEEE Microw. Guided Wave Lett., Vol. 10, 403-405, October 2000.

10. Ooi, B.-L., "Compact EBG in-phase hybrid-ring equal power divider," IEEE Trans. Microw. Theory Tech., Vol. 53, 2329-2334, July 2005.
doi:10.1109/LMWC.2005.850486

11. Zhang, Z. Y., Y. X. Guo, L. C. Ong, and M. Y. W. Chia, "A new wide-band planar balun on a single-layer PCB," IEEE Microw. Wireless Compon. Lett., Vol. 15, 416-418, June 2005.