Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-02
Far Field Imaging Research Based on Multilayer Positive- and Negative-Refractive-Index Media Under off -Axis Illumination
By
Progress In Electromagnetics Research, Vol. 98, 283-298, 2009
Abstract
In this work, a far field imaging model based on the array structure of positive- and negative-refractive-index media and modulation subwavelength-gratings is firstly presented and is named as the multilayer far field superlens (MLFSL). This new lens is capable of producing optical images by enhancing evanescent waves to the far field. The principle of MLFSL is discussed in detail, and the necessary and sufficient condition for designing MLFSL is obtained. Simultaneously, off-axis illumination technology is introduced to MLFSL system to further improve super-resolution, and the transfer matrix which contains the incidence angles is obtained. The results demonstrate that, compared with other far field superlens, the subwavelength resolution of MLFSL has been enhanced. Such remarkable imaging capability of MLFSL promises new potential for nanoscale imaging and lithography.
Citation
Pengfei Cao, Xiaoping Zhang, Lin Cheng, and Qingqing Meng, "Far Field Imaging Research Based on Multilayer Positive- and Negative-Refractive-Index Media Under off -Axis Illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801
References

1. Veselago, V. G., "Properties of materials having simultaneously negative values of dielectric (ε) and magnetic (μ) susceptibilities," Sov. Phys. Solid State, Vol. 8, 2854-2856, 1967.

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.
doi:10.2528/PIER01081901

4. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.
doi:10.2528/PIERB08042302

5. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.2528/PIER03102102

6. Podolskiy, V. A., A. K. Sarychev, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," Opt. Express, Vol. 11, 735, 2003.
doi:10.1364/OE.11.000735

7. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100Terahertz," Science, Vol. 306, 1351, 2004.
doi:10.1126/science.1105371

8. Zhang, S., W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett., Vol. 94, No. 3, 2005.

9. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett., Vol. 32, 53-55, 2007.
doi:10.1364/OL.32.000053

10. Lezec, H. J., J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science, Vol. 316, 430, 2007.
doi:10.1126/science.1139266

11. Shi, L., L. Gao, S. He, and B. Li, "Superlens from metal-dielectric composites of nonspherical particles," Phys. Rev. B, Vol. 76, No. 4, 045116, 2007.
doi:10.1103/PhysRevB.76.045116

12. Ambati, M., N. Fang, C. Sun, and X. Zhang, "Surface resonant states and superlensing in acoustic metamaterials," Phys. Rev. B, Vol. 75, 195447, 2007.
doi:10.1103/PhysRevB.75.195447

13. Cai, W., D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B, Vol. 72, 193101, 2005.
doi:10.1103/PhysRevB.72.193101

14. Rao, X. S. and C. K. Ong, "Subwavelength imaging by a left-handed material superlens," Phys. Rev. E, Vol. 68, 067601, 2003.
doi:10.1103/PhysRevE.68.067601

15. Liu, Z., S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Letters, Vol. 7, No. 2, 403-408, 2007.
doi:10.1021/nl062635n

16. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Design, fabrication and characterization of a far-field superlens," Solid State Communications, Vol. 146, 202-207, 2008.

17. Ramakrishna, S. A. and J. B. Pendry, "Imaging the near field," Journal of Modern Optics, Vol. 50, No. 9, 1419-1430, 2003.

18. Inazuki, Y. C., "Analysis of diffraction orders including mask topography effects for OPC optimization," Proc. of SPIE on Optical Microlithography XX, Vol. 6520, 65204S, San Jose, CA, USA, 2007.

19. Cao, P., L. Cheng, and X. Zhang, "Vector hopkins model research based on off-axis illumination in nanoscale lithography," Progress In Electromagnetics Research, Vol. 93, 291-306, 2009.
doi:10.2528/PIER09031702

20. Born, M. and E.Wolf, Principles of Optics, Pergamon Press, 1980.

21. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Optics Express, Vol. 16, No. 3, 1711-1718, 2008.
doi:10.1364/OE.16.001711

22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 11, 1084-2075, Nov. 1999.

23. Feng, L., X.-P. Liu, M.-H. Lu, and Y.-F. Chen, "Phase compensating effect in left-handed materials," Physics Letters A, Vol. 332, 449-455, 2004.
doi:10.1016/j.physleta.2004.09.035

24. Pokrovsky, A. L. and A. L. Efros, "Lens based on the use of left-handed materials," Appl. Opt., Vol. 42, 5701-5705, 2003.
doi:10.1364/AO.42.005701

25. Xiong, Y., Z. Liu, and X. Zhang, "Far-field superlens imaging at visible wavelengths," SPIE Newsroom, 2008.

26. Durant, S., Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit ," J. Opt. Soc. Am. B, Vol. 23, No. 11, 2383-2392, 2006.
doi:10.1364/JOSAB.23.002383

27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

28. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behavior of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.
doi:10.2528/PIERM08021501

29. Moussa, R., S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, "Negative refraction and superlens behavior in a two-dimensional photonic crystal," Physical Review B, Vol. 71, 085106, 2005.
doi:10.1103/PhysRevB.71.085106