Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-31
Detecting Dissimilarities in EM Constitutive Parameters Using Differential Imaging Operator on Reconstructed Wavefield
By
Progress In Electromagnetics Research, Vol. 98, 267-282, 2009
Abstract
Electromagnetic field will scatter when incident on boundaries separating media with different constitutive parameters. This paper demonstrates the use of a differential operator on recorded scattered waves to reveal the shape of the boundary. The method is noninvasive and is composed of three phases. First, the area of interest is illuminated and the resulting scattered electromagnetic fields are recorded. In the 2nd phase, the captured data is numerically reverse simulated in time to reconstruct the field distribution in the region of interest. Finally, the differential imaging operator is applied on the reconstructed wave field, creating an image delineating the boundary where scattered fields originated. This technique does not require the knowledge of location of the boundaries nor the nature of the discontinuity in the constitutive parameters. The proposed imaging system is scalable, whereby modification of the source signal, recorder sampling, and numerical model allows imaging objects of smaller dimensions and creation of sharper and more accurate images.
Citation
Md Ishfaqur Raza, and Richard E. DuBroff, "Detecting Dissimilarities in EM Constitutive Parameters Using Differential Imaging Operator on Reconstructed Wavefield," Progress In Electromagnetics Research, Vol. 98, 267-282, 2009.
doi:10.2528/PIER09092403
References

1. Blackledge, J. M. and L. Zapalowski, "Quantitative solutions to the inverse scattering problem with applications to medical imaging," Inverse Problems, Vol. 1, 17-32, 1985.
doi:10.1088/0266-5611/1/1/004

2. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

3. Kuster, M., et al. "Acoustic imaging in enclosed spaces: Analysis of room geometry modi¯cations on the impulse response ," J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, 2126-2136, Oct. 2004.

4. Niendorf, T. and D. K. Sodickson, "Highly accelerated cardiovascular magnetic resonance imaging: Concepts and clinical applications," Proceedings of the 28th IEEE EMBS Annual International Conference, 373-376, New York City, USA, Aug. 2006.

5. Wapenaar, C. P. A., G. L. Peels, V. Budejick, and A. J. Berkhout, "Inverse extrapolation of primary seismic waves," Geophysics, Vol. 54, No. 7, 853-863, Jul. 1989.
doi:10.1190/1.1442714

6. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

7. Chang, W. F. and G. A. Cahon, "3D acoustic reverse-time migration," Geophysical Prospecting, Vol. 37, 243-256, Apr. 1989.
doi:10.1111/j.1365-2478.1989.tb02205.x

8. Stolt, R. H., "Migration by fourier transform," Geophysics, Vol. 43, 23-48, 1978.
doi:10.1190/1.1440826

9. Lei, J., S. Liu, Z. H. Li, and M. Sun, "Image reconstruction algorithm based on the extended regularized total least squares method for electrical capacitance tomography," IET Science, Measurement & Technology, Vol. 2, 326-336, Sep. 2008.
doi:10.1049/iet-smt:20080029

10. Yu, J., Z. Huang, H. Ji, B.Wang, and H. Li, "Image reconstruction algorithm of electrical resistance tomography for the measurement of two-phase flow," Proceedings of IEEE Sensors, Vol. 1, 63-66, Oct. 2003.

11. Lam, K., M. J. Yedlin, and C. G. Farquharson, "Two-dimensional radio frequency tomography," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 801-808, Apr. 2007.
doi:10.1109/TMTT.2007.893654

12. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

13. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 785-798, 2009.
doi:10.1163/156939309788019822

14. Winton, S. C., P. Kosmas, and C. M. Rappaport, "FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary layered media," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1721-1728, May 2005.
doi:10.1109/TAP.2005.846719

15. DuBroff, R. I., M. I. Raza, and T. J. Herrick, "Remote detection of acoustic boundaries using radiation imaging operators," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 42, 1012-1019, Nov. 1995.

16. Raza, M. I., R. I. DuBroff, and J. L. Drewniak, "Radiation imaging operators applied to the detection of velocity and density contrast boundaries," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 44, 1401-1404, Nov. 1997.

17. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, 2004.

18. Pan, P. and D. Schonfeld, "Image reconstruction and multidimensional ¯eld estimation from randomly scattered sensors," IEEE Trans. Image Processing, Vol. 17, 94-99, Jan. 2008.
doi:10.1109/TIP.2007.912579

19. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2005.

20. Hira, A., S. A. Hossain, and M. I. Raza, "Interpolation techniques to improve RIO boundary detection," PIERS Proceedings, 1234-1238, Beijing, China, March 23-27, 2009.

21. Berenger, J. P., "Perfect matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas Propagat., Vol. 44, 110-117, Jan. 1996.
doi:10.1109/8.477535

22., www.mathworks.com, MATLAB®, Version 7, Release 14.

23. Zhang, H., S. Y. Tan, and H. S. Tan, "A flanged parallel-plate waveguide probe for microwave imaging of tumors," Progress In Electromagnetics Research, Vol. 97, 45-60, 2009.
doi:10.2528/PIER09090901