Vol. 19
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-01-26
Novel Method to Analyze and Design One-Dimensional Reciprocal Periodic Structures with Symmetrical Cells
By
Progress In Electromagnetics Research B, Vol. 19, 285-303, 2010
Abstract
The dispersion relation is derived for the most general configuration of a passive and reciprocal periodically loaded transmission line in a unique and simple form by introducing two novel parameters. Based on this relation, the phase and group velocities are determined and a simple condition for phase reversal propagation is obtained. The two above mentioned parameters help us to develop a polar diagram to model the behavior of any two-port network as a function of frequency. By this diagram, we can determine the direction of the phase velocity and also the value of the propagation constant. Then, symmetrical cells and thereof the periodic structures composed of them are analyzed. For such structures, it will be shown that the dispersion relation can be rewritten in a form similar to the Lorentz transformation. We design and analyze a bandstop filter to verify the method.
Citation
Omid Zandi, Zahra Atlasbaf, and Mohammad Abrishamian, "Novel Method to Analyze and Design One-Dimensional Reciprocal Periodic Structures with Symmetrical Cells," Progress In Electromagnetics Research B, Vol. 19, 285-303, 2010.
doi:10.2528/PIERB09092308
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons Inc., Apr. 2000.
doi:10.1002/0471723770

2. Guo, C., H.-J. Sun, and X. Lv, "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302

3. Hao, Y. and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications, Artech House, Inc., 2009.

4. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.
doi:10.2528/PIERL09042302

5. Pozar, D. M., Microwave Engineering, Addison-Wesley Publishing Company, 1990.

6. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Engineering Approach, John Wiley & Sons Inc., Nov. 2005.

7. Collin, R. E., Foundations for Microwave Engineering, McGraw Hill Inc., 1992.

8. Lu, W. B., T. J. Cui, X. X. Yin, Z. G. Qian, and W. Hong, "Fast algorithms for large-scale periodic structures using subentire domain basis functions," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1154-1162, Mar. 2005.
doi:10.1109/TAP.2004.842635

9. Du, P., B. Z. Wang, and J. Deng, "An extended simplified sub-entire domain basis function method for finite-sized periodic structures," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1479-1488, 2008.
doi:10.1163/156939308786390139

10. Li, D. Y. and C. D. Sarris, "Efficient finite-difference time-domain modeling of driven periodic structures and related microwave circuit applications," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 8, 1928-1937, Aug. 2008.
doi:10.1109/TMTT.2008.927386

11. Wu, Y. L., Y. X. Zhang, and Y. A. Liu, "Novel Smith chart approaches to solve problems in periodic structure," International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 2, 605-608, Apr. 2008.

12. Jackson, J. D., Classical Electromagnetics, 3 Ed., John Wiley & Sons Inc., 1998.

13. Zandi, O., Z. Atlasbaf, and K. Forooraghi, "Flat multilayer dielectric re°ector antennas," Progress In Electromagnetics Research, Vol. 72, 1-19, 2007.
doi:10.2528/PIER07022604

14. Mallick, A. K. and G. S. Sanyal, "Electromagnetic wave propagation in a rectangular waveguide with sinusoidally varying width," IEEE Trans. Microwave Theory Tech., Vol. 26, No. 4, 243-249, Apr. 1978.
doi:10.1109/TMTT.1978.1129358