Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-03
Superficial Tumor Hyperthermia with Flat Left-Handed Metamaterial Lens
By
Progress In Electromagnetics Research, Vol. 98, 389-405, 2009
Abstract
Flat left-handed metamaterial (LHM) lens can generate appropriate focusing spot in biological tissue as required in microwave tumor hyperthermia treatment. By using single flat LHM lens to concentrate microwave in a mass of tissue covered by water bolus, microwave hyperthermia scheme is proposed for superficial tumor hyperthermia. The power distribution in tissue is simulated by finite-difference time-domain method, and the thermal pattern is calculated by solving the bio-heat transfer equation. It is demonstrated that, by using a flat LHM lens of thickness of 4 cm to concentrate microwave of 2.45 GHz, a temperature above 42oC can be achieved and maintained in one hour in a tissue region of about 1.0 cm in width and 1.2 cm in depth in tissue with the source amplitude of 43.40 V/cm, which is suitable for superficial tumor hyperthermia. By adjusting the position of microwave source, the heating zone in tissue can be adjusted in both the lateral and depth direction in tissue. The effects of fat layer and water bolus on the performance of hyperthermia are investigated as well.
Citation
Yu Gong, and Gang Wang, "Superficial Tumor Hyperthermia with Flat Left-Handed Metamaterial Lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401
References

1. Vernon, C. C., J. W. Hand, S. B. Field, D. Machin, J. B. Whaley, J. Van Der Zee, W. L. J. Van Putten, G. C. Van Rhoon, J. D. P. Van Dijk, D. G. Gonzalez, F. Liu, P. Goodman, and M. Sherar, "Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials," Int. J. Radiat. Oncol. Biol. Phys., Vol. 35, No. 4, 731-744, 1996.

2. Rietveld, P. J. M., W. L. J. Van Putten, J. Van Der Zee, and G. C. Van Rhoon, "Comparison of the clinical effectiveness of the 433MHz Lucite cone applicator with that of a conventional waveguide applicator in applications of superficial hyperthermia," Int. J. Radiat. Oncol. Biol. Phys. , Vol. 43, No. 3, 681-687, 1999.

3. Montecchia, F., "Microstrip-antenna design for hyperthermia treatment of superficial tumors," IEEE Trans. Biomed. Eng., Vol. 39, No. 6, 580-588, 1992.
doi:10.1109/10.141196

4. Prior, M. V., M. L. D. Lumori, J. W. Hand, G. Lamaitre, C. J. Schneider, and J. D. P. van Dijk, "The use of a current sheet applicator array for super¯cial hyperthermia: Incoherent versus coherent operation," IEEE Trans. Biomed. Eng., Vol. 42, No. 7, 694-698, 1995.
doi:10.1109/10.391168

5. Jacobsen, S., P. R. Stauffer, and D. G. Neuman, "Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease," IEEE Trans. Biomed. Eng., Vol. 47, No. 11, 1500-1509, 2000.
doi:10.1109/10.880102

6. Gupta, R. C. and S. P. Singh, "Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body ," Progress In Electromagnetics Research, Vol. 62, 107-125, 2006.
doi:10.2528/PIER06012801

7. Jones, E. L., J. R. Oleson, L. R. Prosnitz, T. V. Samulski, Z. Vujaskovic, D. Yu, L. L. Sanders, and M. W. Dewhirst, "Randomized trial of hyperthermia and radiation for superficial tumors ," J. Clinical Oncol., Vol. 23, No. 13, 3079-3085, 2005.
doi:10.1200/JCO.2005.05.520

8. Kapp, D. S., "Efficacy of adjuvant hyperthermia in the treatment of super¯cial recurrent breast cancer: Confirmation and future directions," Int. J. Radiat. Oncol. Biol. Phys., Vol. 35, No. 5, 1117-1121.

9. Lee, H. K., A. G. Antell, C. A. Perez, W. L. Straube, G. Ramachandran, R. J. Myerson, B. Emami, E. P. Molmenti, A. Buckner, and M. A. Locket, "Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: Prognostic factors in 196 tumors," Int. J. Radiat. Oncol. Biol. Phys., Vol. 40, No. 2, 365-375, 1998.

10. Aydin, K., I. Bulu, and E. Ozbay, "Subwavelength resolution with a negative-index metamaterial superlens ," Appl. Phys. Lett., Vol. 90, No. 25, 254102-2007.
doi:10.1063/1.2750393

11. Zhu, J. and G. V. Eleftheriades, "Experimental verification of overcoming the diffraction limit with a volumetric Veselago-Pendry transmission-line lens," Phy. Rev. Lett., Vol. 101, No. 1, 013902, 2008.
doi:10.1103/PhysRevLett.101.013902

12. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B, Vol. 338, No. 1, 329-332, 2003.
doi:10.1016/j.physb.2003.08.014

13. Wang, G., J. R. Fang, and H. J. Wang, "Focusing of a flat left-handed metamaterial lens in a heterogeneous and lossy medium," Chin. Phys. Lett., Vol. 26, No. 5, 057801, 2009.
doi:10.1088/0256-307X/26/5/057801

14. Zhao, L. and T. J. Cui, "Enhancement of specific absorption rate in lossy dielectric objects using a slab of left-handed material," Phys. Rev. E, Vol. 72, No. 6, 061911, 2005.
doi:10.1103/PhysRevE.72.061911

15. Karathanasis, K. T., I. S. Karanasiou, and N. K. Uzunoglu, "Enhancing the focusing properties of a prototype non-invasive brain hyperthermia system: A simulation study," Proc. Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society, 218-221, 2007.

16. Wang, G. and Y. Gong, "Metamaterial lens applicator for microwave hyperthermia of breast cancer," Int. J. Hyperthermia, Vol. 25, No. 6, 434-455, 2009.
doi:10.1080/02656730903061609

17. Wang, G., Y. Gong, and H. J. Wang, "Schemes of microwave hyperthermia by using flat left-handed material lenses," Microwave and Opt. Tech. Lett., Vol. 51, No. 7, 1738-1743, 2009.
doi:10.1002/mop.24449

18., FCC, Body tissue dielectric parameters tool. http://www.fcc.gov/oet/rfsafety/dielectric.html.
doi:10.1002/mop.24449

19. Zhao, Y., P. Belov, and Y. Hao, "Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method," Phys. Rev. E, Vol. 75, No. 3, 037602, 2007.
doi:10.1103/PhysRevE.75.037602

20. Wang, G., Y. Gong, and H. J. Wang, "On the size of left-handed material lens for near-field target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008.
doi:10.2528/PIER08101902

21. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol, Vol. 85, No. 1, 5-34, 1998.

22. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range," IEEE Trans. Biomed. Eng., Vol. 50, No. 3, 295-304, 1998.
doi:10.1109/TBME.2003.808809

23. Neuman, D. G., P. R. Stauffer, S. Jacobsen, and F. Rossetto, "SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators," Int. J. Hyperthermia, Vol. 18, No. 3, 180-193, 2002.
doi:10.1080/02656730110119198

24. Gelvich, E. A. and V. N. Mazokhin, "Resonance effects in applicators water boluses and their influence on SAR distribution patterns ," Int. J. Hyperthermia, Vol. 16, No. 2, 113-128, 2000.
doi:10.1080/026567300285321

25. Ebrahimi-Ganjeh, M. A. and A. R. Attari, "Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia," Progress In Electromagnetics Research B, Vol. 4, 273-283, 2008.
doi:10.2528/PIERB08011403