Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-26
The Development of Curved Microstrip Antenna with Defected Ground Structure
By
Progress In Electromagnetics Research, Vol. 98, 53-73, 2009
Abstract
A series of curved microstrip antennae with defected ground structure for multiband are proposed,which are more smaller, conveniently conformal, wider radiation beam and suitable for WLAN terminal for different environment. The relation between the main geometry parameters and the antennas' characters are studied with the cavity model method and EM simulation, and the optimum size antenna is achieved later. If keeping the other parameters but increasing the curving angle α, the return loss is almost good at f=2.45 GHz, but poor at f=5.25 GHz and 5.8 GHz. After slight tuning the key parameters, these curved antennae all can work at f=2.45 GHz, 5.25 GHz and 5.8 GHz, and their patterns in the plane that is vertical to the curve axes become more wider or even omni-directional with the curving angle α increasing, which are verified by experiment, their measured gain are 2 dB--6.3 dB.
Citation
Jun-Ping Geng, Jiajing Li, Rong-Hong Jin, Sheng Ye, Xianling Liang, and Minzhu Li, "The Development of Curved Microstrip Antenna with Defected Ground Structure," Progress In Electromagnetics Research, Vol. 98, 53-73, 2009.
doi:10.2528/PIER09081905
References

1. He, W., R. Jin, J. Geng, and M. Lampe, "Multiband dual patch antennas with polarization compensation for WLAN applications," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1907-1911, 2007.
doi:10.1002/mop.22584

2. He, W., R., Jin, J., Geng, and B. Gao, "Multiband antenna system with polarization conversion for wlan applications," Microwave and Optical Technology Letters, Vol. 49, No. 7, 1772-1777, 2007.
doi:10.1002/mop.22501

3. Raj, R. K., M. Joseph, B. Paul, and P. Mohanan, "Compact planar multiband antenna for GPS, DCS, 2.4-5.8 GHz WLAN applications," Electronics Letters, Vol. 41, No. 6, 290-291, 2005.
doi:10.1049/el:20058035

4. Zhong, Q., Y. Li, H. Jiang, and Y. Long, "Design of a novel dual-frequency microstrip patch antenna for WLAN applications," Antennas and Propagation Society International Symposium, 2004. IEEE, Vol. 1, 277-280, June 2004.

5. Archevapanich, T. and N. Anantrasirichai, "Inversed E-shape slot antenna for WLAN applications," International Conference on Control, Automation and Systems 2007, 2854-2857, COEX, Seoul, Korea, Oct. 17-20, 2007.

6. Janapsatya, J. and K. P. Esselle, "Multi-band WLAN antennas based on the principle of duality," Antennas and Propagation Society International Symposium 2006, IEEE, 2679-2682, 2006.
doi:10.1109/APS.2006.1711154

7. Wong, K.-L. and J.-S. Chen, "Cavity-model analysis of a slot-coupled cylindrical-rectangular microstrip antenna," Microwave and Optical Technology Letters, Vol. 9, No. 20, 124-127, 1995.
doi:10.1002/mop.4650090305

8. Chen, J.-S. and K.-L. Wong, "Input impedance of a slot-coupled cylindrical-circular microstrip patch antenna," Microwave and Optical Technology Letters, Vol. 11, No. 1, 21-24, 1996.
doi:10.1002/(SICI)1098-2760(199601)11:1<21::AID-MOP6>3.0.CO;2-R

9. Dahele, J. S., R. J. Mitchell, K. M. Luk, and K. F. Lee, "Effect of curvature on characteristics of rectangular patch antenna," Electron. Lett., Vol. 23, 748-749, 1987.
doi:10.1049/el:19870530

10. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

11. Qu, D. and L. Shafai, "The performance of microstrip patch antennas over high impedance EBG substrates withinand outside its bandgap," 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceeding, 423-426, 2005.

12. Jin, N., A. Yu, and X. Zhang, "An enhanced 2 2 antenna array based on a dumbbell EBG structure," Microwave and Optical Technology Letters, Vol. 39, 395-399, 2003.
doi:10.1002/mop.11228

13. He, W., R. Jin, and J. Geng, "Low RCS and high performances of microstrip antenna using fractal UC-EBG ground," IET Microwaves, Antennas and Propagation, Vol. 1, No. 5, 986-991, 2007.
doi:10.1049/iet-map:20070012

14. He, W., R. Jin, J. Geng, and G. Yang, "2 x 2 array with UC-EBG ground for low RCS and high gain," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1418-1422, 2007.
doi:10.1002/mop.22440

15. Brown, E. B., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, No. 2, 404, 1993.
doi:10.1364/JOSAB.10.000404

16. Radistic, V., Y. Qian, R. Cocciloli, et al. "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Letters, Vol. 8, No. 2, 69, 1998.
doi:10.1109/75.658644

17. Matttew, M. B., B. B. John, O. E. Henry, et al. "Two dimentional photonic crystals fabry-perror resonators with lossy dielectrics," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 11, 2085, 1999.

18. Qian, Y., D. Sievenpiper, V. Raisic, et al. "A novel approach for gain and bandwidth enhancement of patch antennas," RAWON'98 Proceedings, 221 1998.

19. Wang, X., Y. Hao, and P. S. Hall, "Dual-band resonances of a patch antenna on UC-EBG substrate," Asia-Pacific Microwave Conference Proceedings, Vol. 1, 4-8, 2005.

20. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Radiation properties enhancement of triangular patch microstrip antenna array using hexagonal defected ground structure," Progress In Electromagnetics Research M, Vol. 5, 101-109, 2008.
doi:10.2528/PIERM08101601

21. Lin, X.-C. and L.-T. Wang, "A wideband CPW-fed patch antenna with defective ground plane," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 3717-3720, 2004.

22. Wong, K. L., J. S. Kuo, and T. W. Chiou, "Compact microstrip antennas with slots loaded in the ground plane," Antennas and Propagation 11th International Conference, Vol. 2, 623-626, Apr. 2001.

23. Lin, S.-Y. and K.-L. Wong, "Effects of slotted and photonic bandgap ground planes on the charaetsristics of an air-substrate annular-ring patch antenna at TM21 mode," Proceeding of APMC 2001, Vol. 2, 655-658, 2001.

24. Wang, L.-T. and J.-S. Sun, The compact, broadband microstnp antenna with defective ground plane, Vol. 2, 622-624, IEE International Conference on Antenna and Propagation, Apr. 2003.

25. Liu, H., Z. Li, X. Sun, and J. Mao, "Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 55-56, 2005.
doi:10.1109/LMWC.2004.842809

26. Guerin, N., C. Hafner, X. Cui, et al. "Compact directive antennas using frequency-selective surface (FSS)," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 1, 519, 2005.

27. Richards, W., "An improved theory for microstrip patches," IEE Proc. Part. H, Vol. 132, 93-98, 1985.

28. Ansarizadeh, M. and A. Ghorbani, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403

29. Abboud, F., J. P. Damiano, and A. Papiernik, "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," Microwaves, Antennas and Propagation, IEE Proceedings H, Vol. 135, No. 5, 323-326, 1988.

30. Park, J.-S., "An equivalent circuit and modeling method for defected ground structure and its application to the design of microwave circuits ," Microwave Journal, Vol. 46, No. 11, 22-38, Nov. 2008.

31. Hai, S., H. Guang, and H. Wei, "A broadband dual-polarized triangle patch antenna with DGS," Journal of Microwaves, Vol. 21, No. 4, 27-30, Aug. 2005 (in Chinese).

32., http:nnwww.cst.denContentnCompanynAcademic.aspx..

33. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, No. 4, 259-319, Dec. 1998.

34. Geng, J., R. Jin, W. Wang, W. He, M. Ding, Q. Wu, X. Rui, G. Yang, and Z. Fang, "A new quasi-omnidirectional vertical polarisation antenna with low profile and high gain for DTV on vehicle," Microwaves, Antennas & Propagation, IET, Vol. 1, No. 4, 918-924, Aug. 2007.
doi:10.1049/iet-map:20060264