Vol. 9
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-09-24
Scattering and Image Simulation for Reconstruction of 3D PEC Objects Concealed in a Closed Dielectric Box
By
Progress In Electromagnetics Research M, Vol. 9, 41-52, 2009
Abstract
A new approach of imaging reconstruction of concealed PEC targets in a dielectric closed box, using azimuth multi-angle measurements, is developed. As the broadband stepped-frequency radar transmits planar wave from different azimuth directions around the target, the backscattered electrical fields in both the amplitude and phase are obtained. The two-dimensional fast Fourier transform (2D-FFT) algorithm for spline interpolation is adopted for uniformly sampled backscattering fields. Then, 2D images of a dielectric box with and without the concealed targets can be numerically simulated. Multi-azimuth backscattering electri- cal fields of complex shaped PEC targets and dielectric surrounding walls are calculated by the method of moments (MoM), which is based on the coupled volume-surface integral equation (VSIE). The concealed targets can be well identified from the imaging reconstruction.
Citation
Junwen Dai, and Ya-Qiu Jin, "Scattering and Image Simulation for Reconstruction of 3D PEC Objects Concealed in a Closed Dielectric Box," Progress In Electromagnetics Research M, Vol. 9, 41-52, 2009.
doi:10.2528/PIERM09081804
References

1. Ferris, Jr., D. D. and N. C. Currie, "Microwave and millimeterwave systems for wall penetration," Proc. SPIE, Vol. 3375, 269-279, 1998.
doi:10.1117/12.327159

2. Yang, Y. and A. E. Fathy, "See-through-wall imaging using ultra wideband short-pulse radar system," Proc. IEEE Antennas Propag. Soc. Int. Symp., 334-337, 2005.

3. Wang, G., Y. Zhang, and M. Amin, "New approach for target locations in the presence of wall ambiguities," IEEE Trans. Aerosp. Electron. Syst., Vol. 42, No. 1, 301-315, 2006.
doi:10.1109/TAES.2006.1603424

4. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Trans. Aerosp. Electron. Syst., Vol. 41, No. 1, 271-283, 2005.
doi:10.1109/TAES.2005.1413761

5. Wang, G. and M. Amin, "Imaging through unknown walls using different standoff distances," IEEE Trans. Signal Process., Vol. 54, No. 10, 4015-4025, 2006.
doi:10.1109/TSP.2006.879325

6. Amin, M. G., "Radar, signal, and image processing techniques for through the wall imaging," Proc. SPIE, Vol. 5819, 33-45, 2005.
doi:10.1117/12.609921

7. Ahmad, F., M. G. Amin, and S. A. Kassam, "A beamforming approach to stepped-frequency synthetic aperture through-the-wall radar imaging," Proc. CAMSAP05, Vol. 1, 2005.

8. Yoon, Y. S. and M. G. Amin, "High-resolution through-the-wall radar imaging using beamspace music," IEEE Trans. on Antennas and Propag., Vol. 56, No. 6, 1763-1774, 2008.
doi:10.1109/TAP.2008.923336

9. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 6, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

10. Ferris, Jr., D. and N. Currie, "A survey of current technologies for through-the-wall surveillance (TWS)," Proc. SPIE, Vol. 3577, 62-72, 1998.

11. Chang, P. C., R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, "High-frequency EM characterization of through-wall building imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1375-1387, 2009.
doi:10.1109/TGRS.2009.2016082

12. Mensa, D. L., High Resolution Radar Cross-section Imaging, 139-151, Artech House, 1991.

13. Nie, X. C., N. Yuan, L. W. Li, et al. "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. on Antennas and Propag., Vol. 53, No. 2, 818-824, 2005.
doi:10.1109/TAP.2004.841323

14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. on Antennas and Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

15. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. on Antennas and Propag., Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193