Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-08-27
Enhanced Absorption in Periodic One-Dimensional Metallic-Organic Periodic Structure
By
Progress In Electromagnetics Research M, Vol. 8, 221-233, 2009
Abstract
We show theoretically that the absorption of one dimensional metal-organic periodic structure (1D MOPS) can be enhanced due to organic constituents. We have used simple transfer matrix method to calculate the absorption, transmittance and reflectance of the 1D MOPS systems. The absorption, transmittance and reflectance of 1D MOPS containing periodic of Ag/N,N'-bis-(1-naphthyl)-N,N'diphenyl-1,1'biphenyl-4,4'diamine (NPB) structure are calculated taking optical constant of NPB [1] and Ag [2]. The enhanced absorption of the considered structure is obtained in the visible and in the near infrared regions. Besides this we have also studied the absorption, transmittance and reflectance of the 1D MOPS with air and glass substrates. We find that the absorption is enhanced with variation of thickness of organic layer (NPB). Such absorption enhancement in 1D MOPS could allow many potential applications in photo-thermal technology, thermo photo-voltaic and blackbody emission.
Citation
Khem Thapa, Nishakant K. Mishra, Girijesh Narayan Pande, Jagmandar, and Sant Ojha, "Enhanced Absorption in Periodic One-Dimensional Metallic-Organic Periodic Structure," Progress In Electromagnetics Research M, Vol. 8, 221-233, 2009.
doi:10.2528/PIERM09072805
References

1. Zhang, L. T., W. F. Xie, J. Wang, H. Z. Zhang, and Y. S. Zhang, "Optical properties of a periodic one-dimensional metallic-organic photonic crystal," J. Phys. D: Appl. Phys., Vol. 39, 2373-2376, 2006.
doi:10.1088/0022-3727/39/11/010

2. Palik, E. D., Handbook of Optical Constants of Solids I, II, III, Academic Press Ltd., 1998.

3. Bloemer, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, 1676-1678, 1998.
doi:10.1063/1.121150

4. Larciprete, M. C., C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of metallo-dielectric photonic band gap structures," J. Appl. Phys., Vol. 93, 5013-5017, 2003.
doi:10.1063/1.1564283

5. Lepeshkin, N. N., A. Schweinsberg, G. Piredda, R. S. Bannink, and R. W. Boyd, "Enhanced non-linear optical response of one-dimensional metal dielectric photonic crystals," Phys. Rev. Lett., Vol. 93, 123902-123905, 2004.
doi:10.1103/PhysRevLett.93.123902

6. Xu, P. and Z. Y. Li, "Study of frequency band gaps in metal-dielectric composite materials," J. Phys. D: Appl. Phys., Vol. 37, 1718-1724, 2004.
doi:10.1088/0022-3727/37/12/019

7. Scalora, M., M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallo-dielectric, one-dimensional, photonic band gap structures," J. Appl. Phys., Vol. 83, 2377-2383, 1998.
doi:10.1063/1.366996

8. Feng, S., J. M. Elson, and P. L. Overfelt, "Optical properties of multilayer metal-dielectric nano films with all evanescent modes," Optic Express, Vol. 13, 4113-4124, 2005.
doi:10.1364/OPEX.13.004113

9. Maroz, A., A. Tip, and J. M. Combes, "Absorption in periodic layered structures," Synth. Met., Vol. 116, 481-484, 2001.
doi:10.1016/S0379-6779(00)00419-7

10. Tarot, A. C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic PBG structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
doi:10.2528/PIER02010806

11. Yu, J., Y. Shen, X. Liu, R. Fu, J. Zi, and Z. Zhu, "Absorption in one dimensional metallo-dielectric photonic crystals," J. Phys.: Conden. Matter, Vol. 16, L51-L56, 2004.
doi:10.1088/0953-8984/16/7/L01

12. Xi, Y. G., X. Wang, X. H. Hu, X. H. Liu, and J. Zi, "Modification f absorption of a bulk material by photonic crystal," Chines. Phys. Lett., Vol. 19, 1819-1821, 2003.

13. Dong, J. W., G. Q. Liung, Y. H. Chen, and H. Z. Wa, "Robust absorption broad band in one-dimensional metallic-dielectric quasi-periodic structure," Optic Express, Vol. 14, 2014-2019, 2006.
doi:10.1364/OE.14.002014

14. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional Metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 359-362, 2008.
doi:10.2528/PIER08080501

15. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, 1988.

16. Guida, G., A. De Lustrac, and A. Priou, "An introduction to photonoc band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801