Vol. 96
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-09-09
A Unified FDTD Approach for Electromagnetic Analysis of Dispersive Objects
By
Progress In Electromagnetics Research, Vol. 96, 155-172, 2009
Abstract
In order to obtain a unified approach for the Finite-Difference Time-Domain (FDTD) analysis of dispersive media described by a variety of models, the coordinate stretched Maxwell's curl equation in time domain is firstly deduced. Then the FDTD update formulas combined with the semi-analytical recursive convolution (SARC) in Digital Signal Process (DSP) technique for general dispersive media are obtained. In this method, the flexibility of FDTD in dealing with complicated object is retained; the advantages of absolute stability, high accuracy, less storage and high effectiveness of SARC in treating the linear system problem are introduced, and a more unified update formulation for a variety of dispersion media model including Convolution Perfectly Matched Layers (CPML) absorbing boundary is possessed. Therefore it can be applied to analysis of general dispersive media provided that the poles and corresponding residues in dispersive medium model of interest are given. Finally, three typical kinds of dispersive model, i.e. Debye, Drude and Lorentz medium are tested to demonstrate the feasibility of presented approach.
Citation
Yu-Qiang Zhang, and De-Biao Ge, "A Unified FDTD Approach for Electromagnetic Analysis of Dispersive Objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603
References

1. Luebbers, R. J. and F. P. Huusberger, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 8, 222-227, 1990.
doi:10.1109/15.57116

2. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas and Propagat., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

3. Fan, G.-X. and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas and Propagat., Vol. 48, No. 5, 637-646, 2000.
doi:10.1109/8.855481

4. Takayama, Y. and W. Klaus, "Reinterpretation of the auxiliary differential equation method for FDTD," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 3, 102-104, 2002.
doi:10.1109/7260.989865

5. Sullivan, D. M., "Z-transform theory and the FDTD method," IEEE Trans. Antennas and Propagat., Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525

6. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comput., Vol. 31, No. 139, 629-651, 1977.
doi:10.2307/2005997

7. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagntic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, 1981.
doi:10.1109/TEMC.1981.303970

8. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

9. Sacks, Z. S., D. M. Kingsland, D. M. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075

10. Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

11. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Micro. Opt. Tech. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2005.

13. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

14. Shi, Y. and C.-H. Liang, "A strongly well-posed PML with unsplitfield formulations in cylindrical and spherical coordinates," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784

15. Zheng, K., W.-Y. Tam, D.-B. Ge, and J.-D. Xu, "Uniaxial PML absorbing boundary condition for truncating the boundary of Dng metamaterials," Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009.
doi:10.2528/PIERL09030901

16. Janke, W. and G. Blakiewicz, "Semi-analytical recursive algorithms for convolution calculations," IEE Proc. Circuits Devices Syst., Vol. 142, No. 2, 125-130, 1995.
doi:10.1049/ip-cds:19951665

17. Pietrenko, W., W. Janke, and M. K. Kazimierczuk, "Application of semianalytical recursive convolution algorithms for large-signal time-domain simulation of switch-mode power converters," IEEE Trans. Circuits and Systems, Vol. 48, No. 10, 1246-1252, 2001.
doi:10.1109/81.956022

18. Liu, Y.-H., Q. H. Liu, and Z.-P. Nie, "A new efficient FDTD time-to-frequency domain conversion algorithm," Progress In Electromagnetics Research, PIER 92, 33-46, 2009.

19. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

20. Abd-El-Ranouf, H. and R. Mittra, "Scattering analysis of dielectric coated cones," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1857-1871, 2007.

21. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

22. Luebbers, R. J., D. Steich, and K. Kunz, "FDTD calculation of scattering from frequency-dependent materials," IEEE Trans. Antennas and Propagat., Vol. 41, No. 9, 1249-1257, 1993.
doi:10.1109/8.247751