Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-08-27
A Uapo-Based Solution for the Scattering by a Lossless Double-Negative Metamaterial Slab
By
Progress In Electromagnetics Research M, Vol. 8, 207-220, 2009
Abstract
A closed form solution is here proposed for evaluating the field diffracted by the edge of a lossless, isotropic and homogeneous double-negative metamaterial slab when illuminated by a plane wave at skew incidence. It is obtained by considering a Physical Optics approximation of the electric and magnetic equivalent surface currents in the radiation integral and by performing a uniform asymptotic evaluation of this last. The final expression is given in terms of the Geometrical Optics response of the structure and the standard transition function of the Uniform Geometrical Theory of Diffraction, so that it results easy to handle and simple to implement in a computer code. As demonstrated by numerical tests, it allows one to compensate the discontinuities of the Geometrical Optics field at the reflection and incidence shadow boundaries. Moreover, the accuracy of the solution is well assessed by means of comparisons with a commercial tool based on Finite Element Method.
Citation
Gianluca Gennarelli, and Giovanni Riccio, "A Uapo-Based Solution for the Scattering by a Lossless Double-Negative Metamaterial Slab," Progress In Electromagnetics Research M, Vol. 8, 207-220, 2009.
doi:10.2528/PIERM09072003
References

1. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-InterScience, 2006.

3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-InterScience, 2006.

4. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625:1-15, 2001.

5. Caloz, C., C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials (LHMs) in waveguide configurations," J. App. Phys., Vol. 90, No. 11, 5483-5486, Dec. 2001.
doi:10.1063/1.1408261

6. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.
doi:10.2528/PIER02052409

7. Ziolkowski, R. W., "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Optics Express, Vol. 11, No. 7, 662-681, Apr. 2003.
doi:10.1364/OE.11.000662

8. So, P. P. M., H. Du, and W. J. R. Hoefer, "Modeling of metamaterials with negative refractive index using 2D-shunt and 3D-SCN TLM networks," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1496-1505, 2005.
doi:10.1109/TMTT.2005.845196

9. Shi, Y. and C.-H. Liang, "Analysis of the double-negative mateials using multi-domain pseudospectral time-domain algorithm," Progress In Electromagnetics Research, Vol. 51, 153-165, 2005.
doi:10.2528/PIER04092301

10. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "A UTD for predicting fields of sources near or on thin planar positive/negative material discontinuities," Radio Science, Vol. 42, RS6S18, 2007.
doi:10.1029/2007RS003689

11. Cory, H. and C. Zach, "Wave propagation in metamaterial multi-layered structures," Microwave Opt. Technol. Lett., Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005

12. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

13. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical heory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

14. Gennarelli, C., G. Pelosi, C. Pochini, and G. Riccio, "Uniform asymptotic PO diffraction coefficients for an anisotropic impedance half-plane," Journal of Electromagnetic Waves and Applications,, Vol. 13, No. 7, 963-980, 1999.
doi:10.1163/156939399X00439

15. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetic, IEE Electromagnetic Waves Series, Institution of Engineering and Technology, 1995.