Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-08-28
Microstrip Antenna's Gain Enhancement Using Left-Handed Metamaterial Structure
By
Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009
Abstract
The design, simulation and fabrication of a left-handed metamaterial (LHM) structure is presented. The combination of the modified square rectangular Split Ring Resonator (SRR) and the Capacitance Loaded Strip (CLS) were used to obtain the negative value of permeability, μ and the negative permittivity, ε. Nicolson-Ross-Wier approach was used to identify the double negative region. A good agreement between simulated and measured results has been achieved. Upon incorporation with a single patch microstrip antenna, the performance of the antenna was improved where the gain of the microstrip antenna was increased up to 4 dB, and its bandwidth widens from 2.9% to 4.98%. These improvements are due to the negative refraction characteristics of the LHM structure that acts as a lens when placed in front of the antenna.
Citation
Huda Abdul Majid, Mohamad Kamal Abd Rahim, and Thelaha Masri, "Microstrip Antenna's Gain Enhancement Using Left-Handed Metamaterial Structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301
References

1. Carbonell, J., L. J. Rogla, V. E. Boria, and D. Lippens, "Design and experimental verification of backward-wave propagation in periodic waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1527-1533, April 2006.
doi:10.1109/TMTT.2006.871364

2. Aydin, A., G. Kaan, and O. Ekmel, "Two-dimensional left-handed metamaterial with a negative refractive index," Journal of Physics Conference Series, Vol. 36, 6-11, 2006.
doi:10.1088/1742-6596/36/1/002

3. Shelby, R. A., D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

4. Veselago, V. G., "The electrodynamics of substances with simultaniously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequency," Phys. Rev. Lett., Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, PIER 51, 295-328, 2005.

7. Alici, K. B., F. Bilotti, L. Vegni, and E. Ozbay, "Optimazation and tunability of deep subwavelength resonators for metamaterial application: Complete enhanced transmission through a subwave-length aperture," Opt. Express, Vol. 17, 5933-5943, 2009.
doi:10.1364/OE.17.005933

8. Alici, K. B. and E. Ozbay, "Chareacterization and tilted response of a ¯shnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys., Vol. 41, 135011, 2008.
doi:10.1088/0022-3727/41/13/135011

9. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "High-pass filters implemented by composite right/left handed (CRLH) transmission lines based on complementary split rings resonators (CSRRs)," PIERS Online, Vol. 3, No. 3, 251-253, 2007.
doi:10.2529/PIERS060802072849

10. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factor," IEEE Trans. Microwave Theory Tech., Vol. 54, 135, 2006.
doi:10.1109/TMTT.2005.860329

11. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, 083104, 2007.
doi:10.1063/1.2722232

12. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, 13, 2007.
doi:10.1109/TAP.2006.888401

13. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, PIER 70, 1-20, 2007.

14. Yoo, K., R. Mitra, and N. Farahat, "A novel technique for enhancing the directivity of microstrip patch antennas using an EBG superstrate," IEEE Antennas & Propagation Society International Symposium, 1-4, 2008.

15. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna application," IEEE Transactions on Antennas and Wireless Propagation, Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534

16. Burokur, S. N., M. Latrach, and S. Toutain, "Theoritical investigation of a circular patch antenna in the presence of a left-handed mematerial," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 183-186, 2005.
doi:10.1109/LAWP.2005.850797

17. Li, B., B. Wu, and C.-H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, PIER 60, 207-219, 2006.

18. Wongkasem, N. and A. Akyurtlu, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, PIER 63, 295-310, 2006.

19. Caloz, C. and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, Wiley Inter-Science, 2005.

20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Wireless Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622