Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-30
Neural Model for Circular-Shaped Microshield and Conductor-Backed Coplanar Waveguide
By
Progress In Electromagnetics Research M, Vol. 8, 119-129, 2009
Abstract
A Computer Aided Design (CAD) approach based on Artificial Neural Networks (ANN's) is successfully introduced to determine the characteristic parameters of Circular-shaped Microshield and Conductor-Backed Coplanar Waveguide (CMCB-CPW). ANN's have been promising tools for many applications and recently ANN has been introduced to microwave modeling, simulation and optimization. The Multi Layered Perceptron (MLP) neural network used in this work were trained with Levenberg-Marquart (LM), Bayesian regularization (BR), Quasi-Newton (QN), Scaled Conjugate gradient (SCG), Conjugate gradient of Fletcher-Powell (CGF) and Conjugate Gradient backpropagation with Polak-Ribiere (CGP) learning algorithms. This has facilitated the usage of ANN models. The notable benefits are simplicity & accurate determination of the characteristic parameters of CMCBCPW's. The greatest advantage is lengthy formulas can be dispensed with.
Citation
P. Thiruvalar Selvan, and Singaravelu Raghavan, "Neural Model for Circular-Shaped Microshield and Conductor-Backed Coplanar Waveguide," Progress In Electromagnetics Research M, Vol. 8, 119-129, 2009.
doi:10.2528/PIERM09062903
References

1. Yuan, N., C. Ruan, and W. Lin, "Analytical analyses of V, elliptic, and circular shaped microshield transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 42, 855-859, May 1994.
doi:10.1109/22.293535

2. Simons, R. N., "Coplanar Waveguide Circuits, Components and Systems," John Wiley & Sons, Inc., 2001.

3. Dib, N. I., W. P. Harokopus Jr., P. B. Katechi, C. C. Ling, and G. M. Rebeiz, "Study of a novel planar transmission line," IEEE MTT-S Digest, 623-626, 1991.

4. Lee, J.-W., I.-P. Hong, T.-H. Yoo, and H.-K. Park, "Quasi-static analysis of conductor backed coupled CPW," IEEE Electronics Letters, Vol. 34, No. 19, 1861-1862, Sep. 1998.
doi:10.1049/el:19981268

5. Gevorgian, S., L. J. Peter Linner, and E. L. Kollberg, "CAD models for shielded multilayered CPW," IEEE Trans. Microwave Theory Tech., Vol. 43, 772-779, Apr. 1995.
doi:10.1109/22.375223

6. Du, Z. and C. Ruan, "Analytical analysis of circular-shaped microshield and conductor-backed coplanar wave guide," International Journal of Infrared and Millimeter Waves, Vol. 18, No. 1, 165-171, 1997.
doi:10.1007/BF02677903

7. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural networks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

8. Kaya, S., M. Turkmen, K. Guney, and C. Yildiz, "Neural models for the elliptic- and circular-shaped microshield lines," Progress In Electromagnetics Research B, Vol. 6, 169-181, 2008.
doi:10.2528/PIERB08031216

9. Zhang, Q. J. and K. C. Gupta, "Neural Networks for RF and Microwave Design," Artech House, 2000.

10. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Comp., 1994.

11. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802

12. Fun, M.-H. and T. Martin Hagan, "Levenberg-marquardt training for modular networks," Proceedings of the 1997 International Joint Conference on Neural Networks, 468-473, 1996.

13. Levenberg, K., "A method for the solution of certain nonlinear problems in least squares," Quarterly of Applied Mathematics, Vol. 11, 431-441, 1963.

14. Mackay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 3, No. 4, 415-447, 1992.
doi:10.1162/neco.1992.4.3.415

15. Foresee, F. D. and M. T. Hagan, "Gauss-Newton approximation to Bayesian regularization," Proceedings of the 1997 International Joint Conference on Neural Networks, 1930-1935, 1997.

16. Gill, P. E., "Practical Optimization," Academic Press, 1981.

17. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Computer Journal, Vol. 7, 149-154, 1964.
doi:10.1093/comjnl/7.2.149

18. Moller, M. F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, 525-533, 1993.
doi:10.1016/S0893-6080(05)80056-5

19. Dennis, E. and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, 1983.