Vol. 16
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-02
Design of an Ultra-Wideband, Low-Noise Amplifier Using a Single Transistor: a Typical Application Example
By
Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009
Abstract
In this work, a design method of an Ultra-Wideband (UWB), low-noise amplifier (LNA) is proposed exerting the performance limitations of a single high-quality discrete transistor. For this purpose, the compatible (Noise F, Input VSWR Vi, Gain GT) triplets and their (ZS, ZL) terminations of a microwave transistor are exploited for the feasible design target space with the minimum noise Fmin(ƒ), maximum gain GTmax(ƒ) and a low input VSWR Vi over the available bandwidth B. This multi-objective design procedure is reduced into syntheses of the Darlington equivalences of the ZSopt(ƒ), ZLmax(ƒ) terminations with the Unit-elements and short-circuited stubs in the T-, L-, Π- configurations and Particle Swarm Intelligence is successfully implemented as a comparatively simple and efficient optimization tool into both verification of the design target space and the design process of the input and output matching circuits. A typical design example is given with its challenging performance in the simple Π- and Π-configurations realizable by the microstrip line technology. Furthermore the performances of the synthesized amplifiers are compared using an analysis programme in MATLAB code and a microwave system simulator and verified to agree with each other.
Citation
Salih Demirel, Filiz Gunes, and Ufuk Ozkaya, "Design of an Ultra-Wideband, Low-Noise Amplifier Using a Single Transistor: a Typical Application Example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.
doi:10.2528/PIERB09062302
References

1. Mimino, Y., M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, "High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication," IEEE Radio Frequency Integrated Circuits Symp., 209-212, 2000.

2. Trotta, S., H. Knapp, K. Aufinger, T. F. Meister, J. Böck, B. Dehlink, W. Simbürger, and A. L. Scholtz, "An 84 GHz bandwidth and 20 dB gain broadband amplifier in SiGe bipolar technology," IEEE J. Solid-state Circuits, Vol. 42, No. 10, 2099-2106, Oct. 2007.
doi:10.1109/JSSC.2007.905227

3. Li, Q. and Y. P. Zhang, "A 1.5V 2-9.6 GHz inductorless low-noise amplifier in 0.13 μm CMOS," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 10, 2015-2024, Oct. 2007.
doi:10.1109/TMTT.2007.905495

4. Gunes, F., M. Gunes, and M. Fidan, "Performance characterisation of a microwave transistor," IEE Proceedings - Circuits, Devices and Systems, Vol. 141, No. 5, 337-344, Oct. 1994.
doi:10.1049/ip-cds:19941110

5. Gunes, F. and B. A. Cetiner, "A novel smith chart formulation of performance characterisation for a microwave transistor," IEE Proceedings - Circuits Devices and Systems, Vol. 145, No. 6, 419-428, 1998.
doi:10.1049/ip-cds:19982389

6. Gunes, F., H. Torpi, and F. Gurgen, "A multidimensional signal-noise neural network model for microwave transistors," IEE Proceedings - Circuits Devices and Systems, Vol. 145, No. 2, 111-117, Apr. 1998.
doi:10.1049/ip-cds:19981712

7. Gunes, F., N. Turker, and F. Gurgen, "Signal-noise support vector model of a microwave transistor," Int. J. RF and Microwave CAE, Vol. 17, No. 4, 404-415, Jul. 2007.
doi:10.1002/mmce.20239

8. Li, Q. and Y. P. Zhang, "Alternative approach to low-noise amplifier design for ultra-wideband applications," Int. J. RF and Microwave CAE, Vol. 17, No. 2, 153-159, Mar. 2007.
doi:10.1002/mmce.20209

9. Gunes, F. and Y. Cengiz, "Optimization of a microwave amplifier using neural performance data sheets with genetic algorithms," Lecture Notes in Computer Science, 630-637, 2003.

10. Cengiz, Y., H. Goksu, and F. Gunes, "Design of a broadband microwave amplifier using neural performance data sheets and very fast simulated reannealing," Lecture Notes in Computer Science, Vol. 6, No. 2, 815-820, 2006.
doi:10.1007/11760191_119

11. Gunes, F. and S. Demirel, "Gain gradients applied to optimization of distributed-parameter matching circuits for a microwave transistor subject to its potential performance," Int. J. RF and Microwave CAE, Vol. 18, 99-111, 2008.
doi:10.1002/mmce.20254

12. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

13. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

14. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

15. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

16. Lu, Z.-B., A. Zhang, and X.-Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004

17. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904

18. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901

19. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green's functions of multilayer media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504

20. Li, W.-T., X.-W. Shi, L. Xu, and Y.-Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503

21. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

22. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE Conf. Neural Networks IV, 1995.

23. www.agilent.com.