Vol. 10
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-28
The Optical Properties of Bragg Fiber with a Fiber Core of 2-Dimension Elliptical-Hole Photonic Crystal Structure
By
Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009
Abstract
The optical properties of birefringent Bragg fiber with a fiber core of 2-dimension (2D) elliptical-hole photonic crystal structure has been study. Elliptical air holes are introduced into the fiber core to form a normal 2D photonic crystal structure with a hole pitch (center-to-center distance between the air holes) much smaller than the operation wavelength of the Bragg fiber. The elliptical-hole photonic crystal structure acts as an anisotropic medium with different effective indices for transmission light of different polarization, which inevitably results in high birefringence (up to the order of magnitude of 0.01) of the Bragg fiber. The proposed Bragg fiber possesses different band-gaps for differently polarized mode. Besides the periodic alternating layers of high/low refractive indices, the bandwidth of the band-gap is also dependent on the effective index of the fiber core, which can be controlled by the area of the elliptical air holes.
Citation
Jin-Jei Wu, Daru Chen, Kun-Lin Liao, Tzong-Jer Yang, and Wei-Line Ouyang, "The Optical Properties of Bragg Fiber with a Fiber Core of 2-Dimension Elliptical-Hole Photonic Crystal Structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804
References

1. Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, No. 5393, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476

2. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

3. Smith, G. M., N. Venkataraman, M. T. Gallagher, D. Müller, J. A.West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibr," Nature, Vol. 424, 657-659, 2003.
doi:10.1038/nature01849

4. Russell, P., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.
doi:10.1126/science.1079280

5. Ibanescu, M., Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science, Vol. 289, 415-419, 2000.
doi:10.1126/science.289.5478.415

6. Ouyang, G., Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibers," Opt. Express, Vol. 10, 889-908, 2002.

7. Prokopovich, D. V., A. V. Popov, and A. V. Vinogradov, "Analytical and numerical aspects of Bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
doi:10.2528/PIERB08031221

8. Wu, C. J. and S. Gwo, "Calculation of optical properties of an annular dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 821-827, 2007.
doi:10.1163/156939307780749066

9. Frazo, J., M. Baptista, and J. L. Santos, "Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber Loop Mirror," IEEE Sens. J., Vol. 7, 1453-1455, 2007.
doi:10.1109/JSEN.2007.904884

10. Xue, M. and C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett., Vol. 17, 2541-2543, 2005.

11. Shen, G. F, X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202

12. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003

13. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229

14. Chaudhuri, P. R., V. Paulose, and L. Chao, "Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization," IEEE Photon. Technol. Lett., Vol. 16, 1301-1303, 2004.
doi:10.1109/LPT.2004.826219

15. Belardi, W., G. Bouwmans, L. Provino, and M. Douay, "Forminduced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron., Vol. 41, 1558-1564, 2005.
doi:10.1109/JQE.2005.858793

16. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040

17. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightwave Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114

18. Ouyang, G., Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibers: Single-mode transmission and dispersion characteristics," Opt. Express, Vol. 9, 733-747, 2001.

19. Johnson, S. G., M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core omniguide fibers," Opt. Express, Vol. 9, 748-779, 2001.

20. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron., Vol. 38, 927-933, 2002.
doi:10.1109/JQE.2002.1017609

21. Issa, N. A., M. A. V. Eijkelenborg, and M. Fellew, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett., Vol. 29, 1336-1338, 2004.
doi:10.1364/OL.29.001336

22. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B, Vol. 48, 8434-8437, 1993.
doi:10.1103/PhysRevB.48.8434

23. Bertoni, H. L., L. S. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by a periodic dielectric layer," IEEE Trans. Antennas Propagat., Vol. 37, 78-83, 1989.
doi:10.1109/8.192167