1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
2. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702
3. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701
4. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method ," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004
5. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932
6. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and non-dispersive low-loss materials," IET Microw. Antennas Propagat., Vol. 3, 630-637, 2009.
doi:10.1049/iet-map.2008.0087
7. Boughriet, A. H., C. Legrand, and A. Chapoton, "A noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.
doi:10.1109/22.552032
8. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials ," Meas. Sci. Technol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706
9. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242
10. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382
11. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009.
doi:10.1063/1.3124795
12. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606
13. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702
14. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229
15. Hasar, U. C. and O. E. Inan, "A position-invariant calibration-independent method for permittivity measurement," Microw. Opt. Technol. Lett., Vol. 51, 1406-1408, 2009.
doi:10.1002/mop.24364
16. Hasar, U. C. and O. Simsek, "A calibration-independent microwave method for position-insensitive and nonsingular dielectric measurements of solid materials," J. Phys. D: Appl. Phys., Vol. 42, 075403-075412, 2009.
doi:10.1088/0022-3727/42/7/075403
17. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699
18. Hasar, U. C., "A calibration-independent method for broadband and accurate complex permittivity determination of liquid materials," Rev. Sci. Instrum., Vol. 79, 086114-1-086114-3, 2008.
doi:10.1063/1.2976037
19. Hasar, U. C., "Calibration-independent method for complex permittivity determination of liquid and granular materials," Electron. Lett., Vol. 44, 585-586, 2008.
doi:10.1049/el:20080242
20. Huynen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates," IEEE Trans. Instrum. Meas., Vol. 50, 1343-1348, 2001.
doi:10.1109/19.963208
21. Baek, K.-H., H.-Y. Sung, and W. S. Park, "A 3-position transmission/reflection method for measuring the permittivity of low loss materials," IEEE Microwave Guided Wave Lett., Vol. 5, 3-5, 1995.
doi:10.1109/75.382378
22. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Two new measurement methods for explicit determination of complex permittivity," IEEE Trans. Microw. Theory Tech., Vol. 46, 1614-1619, 1998.
doi:10.1109/22.734537
23. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave Guided Wave Lett., Vol. 9, 76-78, 1999.
doi:10.1109/75.755052
24. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Complex permittivity measurement method based on asymmetry of reciprocal two-ports," Electron. Lett., Vol. 32, 1497, 1996.
doi:10.1049/el:19960957
25. Lee, M. Q. and S. Nam, "An accurate broadband measurement of substrate dielectric constant," IEEE Microwave Guided Wave Lett., Vol. 6, 168-170, 1996.
doi:10.1109/75.481091
26. Farcich, N. J., J. Salonen, and P. M. Asbeck, "Single-length method used to determine the dielectric constant of polydimethylsiloxane," IEEE Trans. Microw. Theory Tech., Vol. 56, 2963-2971, 2008.
doi:10.1109/TMTT.2008.2007182
27. Hasar, U. C., "A self-checking technique for materials characterization using calibration-independent measurements of reflecting lines," Microw. Opt. Technol. Lett., Vol. 51, 129-132, 2009.
doi:10.1002/mop.23978
28. Hasar, U. C. and O. Simsek, "A simple approach for evaluating the reciprocity of materials without using any calibration standard," Progress In Electromagnetics Research, Vol. 91, 139-152, 2009.
doi:10.2528/PIER09012905
29. Hasar, U. C., O. Simsek, and M. Gulnahar, "A simple procedure to simultaneously evaluate the thickness of and resistive losses in transmission lines from uncalibrated scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 999-1010, 2009.
30. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, No. 42, 131-142, 2003.
doi:10.2528/PIER03010602
31. Lonappan, A., V. Thomas, J. Jacob, C. Rajasekaran, and K. T. Mathew, "A novel method of detecting malaria using microwaves," Microw. Opt. Technol. Lett., Vol. 51, 915-918, 2009.
doi:10.1002/mop.24202
32. Lonappan, A., V. O. Thirmothy, C. Rajasekaran, V. Thomas, J. Jacob, and K. T. Mathew, "Novel method of detecting cervical cancer using microwaves," Microw. Opt. Technol. Lett., Vol. 50, 1552-1554, 2008.
doi:10.1002/mop.23433
33. Lonappan, A., V. Thomas, G. Bindu, J. Jacob, C. Rajasekaran, and K. T. Mathew, "A novel method of detecting HIV/AIDS using microwaves," Microw. Opt. Tehcnol. Lett., Vol. 50, 557-561, 2008.
doi:10.1002/mop.23143
34. Kharkovsky, S. N. and U. C. Hasar, "Measurement of mode patterns in a high-power microwave cavity," IEEE Trans. Instrum. Meas., Vol. 52, 1815-1819, 2003.
doi:10.1109/TIM.2003.820453
35. Reynoso-Hernandez, J. A., C. F. Estrada-Maldonado, T. Parra, K. Grenier, and J. Graffeuil, "An improved method for estimation of the wave propagation constant γ in broadband uniform millimeter wave transmission line," Microw. Opt. Technol. Lett., Vol. 4, 268-271, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<268::AID-MOP16>3.0.CO;2-6
36. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.
doi:10.1002/mop.24048
37. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination ," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405
38. Wu, Y. Q., Z. X. Tang, Y. H. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402
39. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501
40. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964
41. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
42. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, 2009.
doi:10.1109/TMTT.2009.2020779
43. Hasted, J. B., Aqueous Dielectrics, Chapman & Hall, 1973.
44. Sato, T. and A. Chiba, "Hydrohonic hydration and molecular association in methanol-water mixtures studied by microwave dielectric analysis," J. Chem. Phys., Vol. 112, 2924-2932, 2000.
doi:10.1063/1.480865
45. Challa, R. K., D. Kajfez, V. Demir, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001
46. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502
47. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005