Vol. 95
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-08-04
A Microwave Method for Unique and Non-Ambiguous Permittivity Determination of Liquid Materials from Measured Uncalibrated Scattering Parameters
By
Progress In Electromagnetics Research, Vol. 95, 73-85, 2009
Abstract
A new microwave method based on calibration-independent measurements has been proposed for non-ambiguous complex permittivity determination of liquid materials. We have derived a function in terms of the first-reflection coefficient of the sample using raw complex scattering parameter measurements of three measurement configurations. We have verified the proposed method from measurements of two liquid test samples with the available reference data in the literature.
Citation
Ugur Cem Hasar, O. Simsek, M. K. Zateroglu, and A. E. Ekinci, "A Microwave Method for Unique and Non-Ambiguous Permittivity Determination of Liquid Materials from Measured Uncalibrated Scattering Parameters," Progress In Electromagnetics Research, Vol. 95, 73-85, 2009.
doi:10.2528/PIER09061401
References

1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.

2. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

3. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

4. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method ," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004

5. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

6. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and non-dispersive low-loss materials," IET Microw. Antennas Propagat., Vol. 3, 630-637, 2009.
doi:10.1049/iet-map.2008.0087

7. Boughriet, A. H., C. Legrand, and A. Chapoton, "A noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.
doi:10.1109/22.552032

8. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials ," Meas. Sci. Technol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

9. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

10. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

11. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009.
doi:10.1063/1.3124795

12. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

13. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702

14. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229

15. Hasar, U. C. and O. E. Inan, "A position-invariant calibration-independent method for permittivity measurement," Microw. Opt. Technol. Lett., Vol. 51, 1406-1408, 2009.
doi:10.1002/mop.24364

16. Hasar, U. C. and O. Simsek, "A calibration-independent microwave method for position-insensitive and nonsingular dielectric measurements of solid materials," J. Phys. D: Appl. Phys., Vol. 42, 075403-075412, 2009.
doi:10.1088/0022-3727/42/7/075403

17. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699

18. Hasar, U. C., "A calibration-independent method for broadband and accurate complex permittivity determination of liquid materials," Rev. Sci. Instrum., Vol. 79, 086114-1-086114-3, 2008.
doi:10.1063/1.2976037

19. Hasar, U. C., "Calibration-independent method for complex permittivity determination of liquid and granular materials," Electron. Lett., Vol. 44, 585-586, 2008.
doi:10.1049/el:20080242

20. Huynen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates," IEEE Trans. Instrum. Meas., Vol. 50, 1343-1348, 2001.
doi:10.1109/19.963208

21. Baek, K.-H., H.-Y. Sung, and W. S. Park, "A 3-position transmission/reflection method for measuring the permittivity of low loss materials," IEEE Microwave Guided Wave Lett., Vol. 5, 3-5, 1995.
doi:10.1109/75.382378

22. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Two new measurement methods for explicit determination of complex permittivity," IEEE Trans. Microw. Theory Tech., Vol. 46, 1614-1619, 1998.
doi:10.1109/22.734537

23. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave Guided Wave Lett., Vol. 9, 76-78, 1999.
doi:10.1109/75.755052

24. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Complex permittivity measurement method based on asymmetry of reciprocal two-ports," Electron. Lett., Vol. 32, 1497, 1996.
doi:10.1049/el:19960957

25. Lee, M. Q. and S. Nam, "An accurate broadband measurement of substrate dielectric constant," IEEE Microwave Guided Wave Lett., Vol. 6, 168-170, 1996.
doi:10.1109/75.481091

26. Farcich, N. J., J. Salonen, and P. M. Asbeck, "Single-length method used to determine the dielectric constant of polydimethylsiloxane," IEEE Trans. Microw. Theory Tech., Vol. 56, 2963-2971, 2008.
doi:10.1109/TMTT.2008.2007182

27. Hasar, U. C., "A self-checking technique for materials characterization using calibration-independent measurements of reflecting lines," Microw. Opt. Technol. Lett., Vol. 51, 129-132, 2009.
doi:10.1002/mop.23978

28. Hasar, U. C. and O. Simsek, "A simple approach for evaluating the reciprocity of materials without using any calibration standard," Progress In Electromagnetics Research, Vol. 91, 139-152, 2009.
doi:10.2528/PIER09012905

29. Hasar, U. C., O. Simsek, and M. Gulnahar, "A simple procedure to simultaneously evaluate the thickness of and resistive losses in transmission lines from uncalibrated scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 999-1010, 2009.

30. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, No. 42, 131-142, 2003.
doi:10.2528/PIER03010602

31. Lonappan, A., V. Thomas, J. Jacob, C. Rajasekaran, and K. T. Mathew, "A novel method of detecting malaria using microwaves," Microw. Opt. Technol. Lett., Vol. 51, 915-918, 2009.
doi:10.1002/mop.24202

32. Lonappan, A., V. O. Thirmothy, C. Rajasekaran, V. Thomas, J. Jacob, and K. T. Mathew, "Novel method of detecting cervical cancer using microwaves," Microw. Opt. Technol. Lett., Vol. 50, 1552-1554, 2008.
doi:10.1002/mop.23433

33. Lonappan, A., V. Thomas, G. Bindu, J. Jacob, C. Rajasekaran, and K. T. Mathew, "A novel method of detecting HIV/AIDS using microwaves," Microw. Opt. Tehcnol. Lett., Vol. 50, 557-561, 2008.
doi:10.1002/mop.23143

34. Kharkovsky, S. N. and U. C. Hasar, "Measurement of mode patterns in a high-power microwave cavity," IEEE Trans. Instrum. Meas., Vol. 52, 1815-1819, 2003.
doi:10.1109/TIM.2003.820453

35. Reynoso-Hernandez, J. A., C. F. Estrada-Maldonado, T. Parra, K. Grenier, and J. Graffeuil, "An improved method for estimation of the wave propagation constant γ in broadband uniform millimeter wave transmission line," Microw. Opt. Technol. Lett., Vol. 4, 268-271, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<268::AID-MOP16>3.0.CO;2-6

36. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.
doi:10.1002/mop.24048

37. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination ," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405

38. Wu, Y. Q., Z. X. Tang, Y. H. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

39. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

40. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

41. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

42. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, 2009.
doi:10.1109/TMTT.2009.2020779

43. Hasted, J. B., Aqueous Dielectrics, Chapman & Hall, 1973.

44. Sato, T. and A. Chiba, "Hydrohonic hydration and molecular association in methanol-water mixtures studied by microwave dielectric analysis," J. Chem. Phys., Vol. 112, 2924-2932, 2000.
doi:10.1063/1.480865

45. Challa, R. K., D. Kajfez, V. Demir, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

46. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

47. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005