Vol. 9
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-07
Measuring Complex Permeability of Ferromagnetic Thin Film Up to 10 GHz
By
Progress In Electromagnetics Research Letters, Vol. 9, 139-145, 2009
Abstract
The complex permeability of ferromagnetic thin films is measured up to 10 GHz by using shorted microstrip method combining with conformal mapping. The S-parameters are measured by vector network analyzer (VNA), and the effect of thin film placed both upwards and downwards in the fixture are investigated. The experimental results show that the complex permeability of the thin films is measured accurately from 500 MHz to 10 GHz, and loading the samples with thin film placed downwards can avoid the electromagnetic resonance effectively.
Citation
Yunqiu Wu, Zong-Xi Tang, Yuehang Xu, Biao Zhang, and Xi He, "Measuring Complex Permeability of Ferromagnetic Thin Film Up to 10 GHz ," Progress In Electromagnetics Research Letters, Vol. 9, 139-145, 2009.
doi:10.2528/PIERL09061201
References

1. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

2. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801

3. Yiddish, C., K. Gooney, M. Turkmen, and S. Kayak, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802

4. Kumar, A. V. P., V. Hamsakutty, J. Yohannan, and K. T. Mathew, "Microstripline FED cylindrical dielectric resonator antenna with a coplanar parasitic strip," Progress In Electromagnetics Research, Vol. 60, 143-152, 2006.
doi:10.2528/PIER05121301

5. Saed, M. A., "Reconfigurable broadband microstrip antenna FED by a coplanar waveguide," Progress In Electromagnetics Research, Vol. 55, 227-239, 2005.
doi:10.2528/PIER05031601

6. Liu, Y., L. Chen, C. Y. Tan, H. J. Liu, and C. K. Ong, "Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation," Review of Scicentific Instruments, Vol. 76, 063911.1-063911.8, 2005.

7. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "An improved measurement configuration for determining the permeability of ferromagnetic thin film materials," Journal of Electromagnetic Waves and Applications, Vol. 22, 343-352, 2008.
doi:10.1163/156939308784160811

8. Wu, Y. Q., Z. X. Tang, Y. H. Xu, B. Zhang, and X. He, "An improved method for permeability measurement of magnetic thin film," Journal of Electromagnetic Waves and Applications, Vol. 22, 1173-1179, 2008.
doi:10.1163/156939308784158968

9. Svacina, J., "A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide," IEEE Microwave and Guided Wave Letters, Vol. 2, 385-387, 1992.
doi:10.1109/75.160115

10. Pucel, R. A. and D. J. Massé, "Microstrip propagation on magnetic substrates --- Part I: Design theory," IEEE Trans. Microwave Theory Tech., Vol. 20, 304-308, 1972.
doi:10.1109/TMTT.1972.1127749