Vol. 16
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-09
The Concept of Scale-Changing Network in Global Electromagnetic Simulation of Complex Structures
By
Progress In Electromagnetics Research B, Vol. 16, 127-154, 2009
Abstract
The concept of Scale-Changing Network is reported for the electromagnetic modeling of complex planar structures composed of a collection of metallic patterns printed on a dielectric surface and whose size covers a large range of scale. Examples of such multi-scale structures are provided by multi-band frequency-selective surfaces, finitesize arrays of non-identical cells and fractal planar objects. Scale-Changing Networks model the electromagnetic coupling between various scale levels in the studied structure and are computed separately. The cascade of Scale-Changing Networks bridges the gap between the smallest and the highest scale levels and allows forming a monolithic (unique) electromagnetic formulation for the global electromagnetic simulation of complex planar structures. Derivation of these networks is presented and key advantages of the electromagnetic approach are reported.
Citation
Herve Aubert, "The Concept of Scale-Changing Network in Global Electromagnetic Simulation of Complex Structures," Progress In Electromagnetics Research B, Vol. 16, 127-154, 2009.
doi:10.2528/PIERB09060504
References

1. Mittra, R., J.-F. Ma, E. Lucente, and A. Monorhio, "CBMOM --- An iteration free MoM approach for solving large multiscale EM radiation and scattering problems," IEEE Antennas and Propagation Society International Symposium, Vol. 2B, 2-5, Washington, D.C., Jul. 3-8, 2005.

2. Lucente, E., A. Monorchio, and R. Mittra, "Generation of characteristic basis functions by using sparse MoM impedance matrix to construct the solution of large scattering and radiation problems," IEEE Antennas and Propagation Society International Symposium, 4091-4094, Albuquerque, New Mexico, Jul. 9-14, 2006.

3. Nadarassin, M., H. Aubert, and H. Baudrand, "Analysis of planar structures by an integral multi-scale approach," IEEE MTT-S International Microwave Symposium, Vol. 2, 653-656, Orlando, Florida, USA, May 14-19, 1995.

4. Baudrand, H. and S. Wane, Circuits Multi-echelles: Utilisation des Sources Auxiliaires. Modelisation Caracterisation et Mesures de Circuits Integres Passifs R.F, Vol. 3, 75-108, Hermes, 2003.

5. Baudrand, H., "Electromagnetic study of coupling between active and passive circuits," Microwave and Optoelectronics Conference, Vol. 1, 143-152, Aug. 11-14, 1997.

6. Perret, E., H. Aubert, and H. Legay, "Scale-Changing technique for the electromagnetic modelling of MEMS-controlled planar phase-shifters," IEEE Trans. Microwave Theory and Tech., Vol. 54, No. 9, 3594-3601, Sep. 2006.
doi:10.1109/TMTT.2006.879777

7. Perret, E., N. Raveu, H. Aubert, and H. Legay, "Scale-Changing technique for MEMS-controlled phase-shifters," 36th European Microwave Week, 866-869, Manchester, United Kingdom, Sep. 10-15, 2006.

8. Voyer, D., H. Aubert, and J. David, "Scale-changing technique for the electromagnetic modeling of planar self-similar structures," IEEE Trans. Antennas Propagat., Vol. 54, No. 10, 2783-2789, Oct. 2006.
doi:10.1109/TAP.2006.882157

9. Voyer, D., H. Aubert, and J. David, "Radar cross section of discrete self-similar objects using a recursive electromagnetic analysis," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 4260-4263, Monterey, California, USA, Jun. 20-26, 2004.

10. Voyer, D., H. Aubert, and J. David, "Radar cross section of self-similar targets," Electronics Letters, Vol. 41, No. 4, 215-217, Feb. 17, 2005.
doi:10.1049/el:20057319

11. Perret, E. and H. Aubert, "Scale-Changing technique for the computation of the input impedance of active patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. IEEE Ant, 326-328, 2005.
doi:10.1109/LAWP.2005.853999

12. Perret, E. and H. Aubert, "A multi-scale technique for the electromagnetic modeling of active antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 3923-3926, Monterey, California, USA, Jun. 20-25, 2004.

13. Raveu, N., G. Prigent, H. Aubert, P. Pons, and H. Legay, "Scale-Changing technique design and optimisation tool for active reflect-arrays cell," 37th European Microwave Conference, 736-739, Munchen, Germany, Oct. 9-12, 2007.

14. Raveu, N., E. Perret, H. Aubert, and H. Legay, "Design of MEMS controlled phase shifter using SCT," PIERS Online, Vol. 3, No. 2, 230-232, Beijing, China, Mar. 26-30, 2007.
doi:10.2529/PIERS060907032452

15. Raveu, N., E. Perret, H. Aubert, and H. Legay, "Scale-changing technique: A design tool for reflectarrays active cells," Proceedings of the European Microwave Association, Vol. 4, No. 2, 163-168, Journal of the European Microwave Association, Jun. 2008.

16. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, 1991.

17. Rozzi, T. E. and W. F. G. Mecklenbrauker, "Wide-band network modelling of interacting inductive irises and steps," IEEE Trans. Microwave Theory and Tech., Vol. 23, No. 2, 235-245, Feb. 1975.
doi:10.1109/TMTT.1975.1128532

18. Tao, J. W. and H. Baudrand, "Multimodal variational analysis of uniaxial waveguide discontinuities," IEEE Trans. Microwave Theory and Tech., Vol. 39, No. 3, 506-516, Mar. 1991.
doi:10.1109/22.75293

19. Chew, W. C., Waves and Fileds in Inhomogeneous Media, IEEE Press, 1995.

20. Baudrand, H., "Representation by equivalent circuit of the integral methods in microwave passive elements," European Microwave Conference, Vol. 2, 1359-1364, Budapest, Hungary, Sep. 10-13, 1990.

21. Baudrand, H., H. Aubert, D. Bajon, and F. Bouzidi, "Equivalent network representation of boundary conditions involving generalized trial quantities," Annals of Telecommunications, Vol. 52, No. 5-6, 285-292, 1997.

22. Baudrand, H., Introduction au Calcul des Elements de Circuits Passifs en Hyperfrequences, Editions Cepadues, 2000.

23. Aubert, H. and H. Baudrand, "L'electromagnetisme par les Schemas Equivalents," Editions Cepadues, 2003.

24. Bouzidi, F., H. Aubert, D. Bajon, and H. Baudrand, "Equivalent network representation of boundary conditions involving generalized trial quantities --- Application to lossy transmission lines with finite metallization thickness," IEEE Trans. Microwave Theory and Tech., Vol. 45, 869-876, Jun. 1997.
doi:10.1109/22.588594

25. Nadarassin, M., H. Aubert, and H. Baudrand, "Analysis of planar structures by an integral approach using entire domain trial functions," IEEE Trans. Microwave Theory and Tech., Vol. 10, 2492-2495, Oct. 1995.
doi:10.1109/22.466185

26. Larbi, C., A. Bouallegue, and H. Baudrand, "Utilisation d'un processus de renormalisation pour l'etude electromagnetique des structures fractales bidimensionnelles," Annales des Telecommunications, Vol. 60, No. 7-8, 1023-1050, 2005.

27. Larbi, C., T. Ben Salah, T. Aguili, A. Bouallegue, and H. Baudrand, "Study of the Sierpinski's Carpet fractal planar antenna by the renormalisation method," International Journal of Microwave and Optical Technology, 58-65, 2005.