Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-25
A Millimeter-Wave Ultra-Wideband Four-Way Switch Filter Module Based on Novel Three-Line Microstrip Structure Band-Pass Filters
By
Progress In Electromagnetics Research, Vol. 94, 297-309, 2009
Abstract
This paper presents a millimeter-wave ultra-wideband four-way switch filter module integrating six building blocks including four band-pass filters and two switches. The switch filter module works at whole Ka-band (26-40 GHz) and consists of four wideband band-pass filters and two monolithic microwave integrated circuit (MMIC) single pole four throw (SP4T) switches. The four wideband band-pass filters are realized by a novel three-line microstrip structure band-pass filter. Compared with the traditional three-line filter, the proposed three-line filter not only retains virtues of traditional three-line filter, but also resolves drawbacks of it which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The proposed three-line filter is validated by electromagnetic simulation. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 64 mm×44 mm×7.5 mm. The fabricated switch filter module exhibits good performances: for four different states, the measured insertion loss and return loss are all better than 8.5 dB and 10 dB in each pass-band, respectively.
Citation
Zhigang Wang, Qiuliang Lai, Rui-Min Xu, Bo Yan, Weigan Lin, and Yunnchuan Guo, "A Millimeter-Wave Ultra-Wideband Four-Way Switch Filter Module Based on Novel Three-Line Microstrip Structure Band-Pass Filters," Progress In Electromagnetics Research, Vol. 94, 297-309, 2009.
doi:10.2528/PIER09060501
References

1. Lim, K., S. Pinel, M. F. Davis, A. Sutono, C. H. Lee, D. Heo, A. Obatoynbo, J. Laskar, E. M. Tentzeris, and R. Tummala, "RF-system-on-package (SOP) for wireless communications," IEEE Microwave Mag., Vol. 3, No. 1, 88-99, March 2002.
doi:10.1109/MMW.2002.990700

2. Bae, J. H., W. K. Choi, J. S. Kim, G. Y. Choi, and J. S. Chae, "Study on the demodulation structure of reader receiver in a passive RFID environment," Progress In Electromagnetics Research, Vol. 91, 243-258, 2009.
doi:10.2528/PIER09021103

3. Kim, J. H., Y. H. You, K. I. Lee, and J. H. Yi, "Pilot-less synchronization receiver for UWB-based wireless application," Progress In Electromagnetics Research, Vol. 83, 119-131, 2008.
doi:10.2528/PIER08040202

4. Chan, Y. K. K., B. K. Chung, and H. T. Chuah, "Transmitter and receiver design of an experimental airborne synthetic aperture radar sensor," Progress In Electromagnetics Research, Vol. 49, 203-218, 2004.
doi:10.2528/PIER04031601

5. Ma, T. G., C. J. Wu, and C. F. Chou, "An impulse-radio-based ultrawideband RF front-end module with a new multilayered microwave sampler," Progress In Electromagnetics Research, Vol. 86, 1-18, 2008.
doi:10.2528/PIER08090501

6. Li, S., S. L. Zheng, X. M. Zhang, and X. F. Jin, "A compact photonic microwave receiver integrated with dielectric resonator antenna," Journal of Electromagnetic Waves and Application, Vol. 22, No. 11--12, 1547-1555, 2008.
doi:10.1163/156939308786390030

7. E. G., M. N. Petsios, N. K. Uzunoglu, "Towards," Journal of Electromagnetic Waves and Application, Vol. 19, No. 15, 2015-2031, 2005.
doi:10.1163/156939305775570512

8. Zhao, X. and K. Huang, "Calculation of probability distribution of maximal received power of electronic receiver in lighting electromagnetic environment," Journal of Electromagnetic Waves and Application, Vol. 19, No. 2, 221-230, 2005.
doi:10.1163/1569393054497357

9. Jiang, B. T. and J. F. Mao, "A good performance design for integrating three antennas in a dual SIM mobile phone for GSM/DCS/bluetooth operations," Journal of Electromagnetic Waves and Application, Vol. 22, No. 14--15, 1943-1954, 2008.
doi:10.1163/156939308787537892

10. Chou, H. T., L. R. Kuo, and W. J. Liao, "Characteristic evaluation of an active patch antenna structure with an embedded LNA module for GPS reception," Journal of Electromagnetic Waves and Application, Vol. 21, No. 15, 599-614, 2007.
doi:10.1163/156939307780667283

11. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communication," Journal of Electromagnetic Waves and Application, Vol. 20, No. 3, 399-408, 2006.
doi:10.1163/156939306775701722

12. Wang, Z. G., P. Li, R. M. Xu, and W.G. Lin, "A compact X-band receiver front-end module based on low temperature Co-fired ceramic technology," Progress In Electromagnetics Research, Vol. 92, 167-180, 2009.
doi:10.2528/PIER09040701

13. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 11, 2099-2109, November 1996.
doi:10.1109/22.543968

14. Shih, Y. C. and T. Itoh, "E-plane filters with finite-thickness septa," IEEE Trans. Microw. Theory Tech., Vol. 31, No. 12, 1009-1013, December 1983.
doi:10.1109/TMTT.1983.1131653

15. Ito, M., K. Maruhashi, K. Ikuina, T. Hashiguchi, S. Iwanaga, and K. Ohata, "A 60-GHz-band planar dielectric waveguide filter for frip-chip modules," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 12, 2431-2436, December 2001.
doi:10.1109/22.971632

16. Yeung, L. K. and K. L. Wu, "A compact second-order LTCC bandpass filter with two finite transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 337-341, February 2003.
doi:10.1109/TMTT.2002.807846

17. Hong, J. S. and S. Li, "Theory and experiment of dual-Mode microstrip triangular patch resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1237-1248, April 2004.
doi:10.1109/TMTT.2004.825653

18. Chang, C. Y. and T. Itoh, "A modified parallel-coupled filter structure that improve the upper stopband rejection and response symmetry," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 2, 310-314, February 1991.
doi:10.1109/22.102975

20. Schwindt, R. and C. Nguyen, "Spectral domain analysis of three symmetric coupled lines and application to a new bandpass filter," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1183-1189, July 1994.
doi:10.1109/22.299755

21. Kuo, J. T. and E. Shih, "Wideband bandpass filter design with three-line microstrip structures,", Vol. 149, No. 56, 246, October/December, 2002.

22. Kuo, J. T., "Accurate quasi-TEM spectral domain analysis of single and multiple coupled microstrip lines of arbitrary metallization thickness," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1881-1888, August 1995.
doi:10.1109/22.402277

23. Paul, C. R., Analysis of Multiconductor Transmission Lines, John Wiley & Sons, 1994.

24. Lin, F. L., C. W. Chiu, and R. B. Wu, "Coplanar waveguide bandpass filter-a ribbon-of-brick-wall design," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 7, 1589-1596, July 1995.
doi:10.1109/22.392919

25. Hong, J. S. and M. J. Lancaster, Mircrostrip Filters for RF/Microwave Applications, Wiley, 2001.