Vol. 9
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-01
Broadband Design of Printed Compound Air-Fed Array with Hexagonal Configuration
By
Progress In Electromagnetics Research Letters, Vol. 9, 129-137, 2009
Abstract
A printed compound air-fed array antenna with hexagonal configuration is developed, which consists of a stacked-patch radiator, an FSS-cover an AMC-base both with square elements arranged as a hexagonal grid respectively. By means of optimal option for all the structural parameters individually, a broadband prototype is designed at 10 GHz, the peak-gain of 17.11 dBi is performed by hexagonal aperture with side-length of 45 mm (1.5 wavelength); a common frequency bandwidth of 8.20 % for VSWR ≤ 2.0:1 and gain-drop ≤ 2 dB and SLL ≤ −15 dB is obtained by simulation. They are verified by measured results as 16.59 dBi peak-gain and 7.54 % common bandwidth.
Citation
Xiang He, Wen-Xun Zhang, and Zhi Hang Wu, "Broadband Design of Printed Compound Air-Fed Array with Hexagonal Configuration," Progress In Electromagnetics Research Letters, Vol. 9, 129-137, 2009.
doi:10.2528/PIERL09052401
References

1. Zhang, W. X., D. L. Fu, and A. N. Wang, "A compound printed air-fed array antenna," Proc. Int. Conf. on Electromag., Advanced Appl., 1054-1057, Torino, Italy, Sep. 2007.

2. Sauleau, R., P. Coquet, and T. Matsui, "Low profile directive quasi-planar antennas based on millimetre wave Fabry-Perot cavities," IEE Proc. Microw. Antennas Propag., Vol. 150, No. 4, 274-278, 2003.
doi:10.1049/ip-map:20030416

3. Sauleau, R., P. Coquet, and T. Matsui, "Near-field coupling between a printed antenna and a Fabry-Perot resonator: Experiment study of the radiation properties at millimeter wave frequencies," Microw. and Opt. Tech. Letters, Vol. 38, No. 6, 438-443, 2003.
doi:10.1002/mop.11084

4. Ge, Z. C., W. X. Zhang, and Z. G. Liu, "Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover," Microw. and Opt. Tech. Letters, Vol. 48, No. 7, 1272-1274, 2006.
doi:10.1002/mop.21674

5. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147

6. Fu, D. L., W. X. Zhang, Y. Y. Gu, et al. "Two improved Fabry-Perot resonator printed antennas," Chinese Journal of Radio Science, Vol. 23, No. 2, 300-304, 2008 (in Chinese).

7. He, X., W. X. Zhang, and D. L. Fu, "A broadband compound printed air-fed array antenna," International Workshop on Metamaterials, 263-266, Nanjing, China, Nov. 2008.