Vol. 9
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-06-23
Application of Quasi Monte Carlo Integration Technique in EM Scattering from Finite Cylinders
By
Progress In Electromagnetics Research Letters, Vol. 9, 109-118, 2009
Abstract
In this work, a Quasi Monte Carlo (QMC) Integration Technique using Halton Sequence is proposed for the Electric Field Integral Equation (EFIE) in the Method of Moments (MoM) solution for scattering problems. It is found that the Halton Sequence used in QMC integration scheme is capable of handling the singularity issue in the EFIE automatically and at the same time provides solution to the scattering problems very easily. Finally the proposed technique is applied to solve the scattering problem from a finite cylinder employing the entire domain basis function expansions. The results obtained show a good agreement between the proposed and conventional technique.
Citation
Mrinal Mishra, and Nisha Gupta, "Application of Quasi Monte Carlo Integration Technique in EM Scattering from Finite Cylinders," Progress In Electromagnetics Research Letters, Vol. 9, 109-118, 2009.
doi:10.2528/PIERL09050806
References

1. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2 Ed., Cambridge University Press, 1992.

2. Ripley, B. D., Stochastic Simulation, John Wiley & Sons, Inc., 1987.

3. Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992.

4. Cai, W., Y. Yu, and X. C. Yu, "Singularity treatment and high-order RWG basis functions for integral equations of electromagnetic scattering," Int. J. Numerical Methods Eng., Vol. 53, 31-47, 2002.
doi:10.1002/nme.390

5. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," SIAM Journal on Numerical Analysis, Vol. 19, 1260-1262, December 1982.
doi:10.1137/0719090

6. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3180-3190, October 2005.
doi:10.1109/TAP.2005.856342

7. Mishra, M. and N. Gupta, "Singularity treatment for integral equations in electromagnetic scattering using Monte Carlo integration technique," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1619-1623, June 2008.
doi:10.1002/mop.23457

8. Mishra, M. and N. Gupta, "Monte Carlo integration technique for the analysis of electromagnetic scattering from conducting surfaces," Progress In Electromagnetic Research, Vol. 79, 91-106, 2008.
doi:10.2528/PIER07092005

9. Halton, J. H., "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals," Numer. Math., Vol. 2, 84-196, 1996.

10. Mishra, M., N. Gupta, A. Dubey, and S. Shekhar, "Application of quasi Monte Carlo integartion technique in efficient capacitance computation," Progress In Electromagnetics Research, Vol. 90, 309-322, 2009.
doi:10.2528/PIER09011310