1. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2 Ed., Cambridge University Press, 1992.
2. Ripley, B. D., Stochastic Simulation, John Wiley & Sons, Inc., 1987.
3. Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992.
4. Cai, W., Y. Yu, and X. C. Yu, "Singularity treatment and high-order RWG basis functions for integral equations of electromagnetic scattering," Int. J. Numerical Methods Eng., Vol. 53, 31-47, 2002.
doi:10.1002/nme.390
5. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," SIAM Journal on Numerical Analysis, Vol. 19, 1260-1262, December 1982.
doi:10.1137/0719090
6. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3180-3190, October 2005.
doi:10.1109/TAP.2005.856342
7. Mishra, M. and N. Gupta, "Singularity treatment for integral equations in electromagnetic scattering using Monte Carlo integration technique," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1619-1623, June 2008.
doi:10.1002/mop.23457
8. Mishra, M. and N. Gupta, "Monte Carlo integration technique for the analysis of electromagnetic scattering from conducting surfaces," Progress In Electromagnetic Research, Vol. 79, 91-106, 2008.
doi:10.2528/PIER07092005
9. Halton, J. H., "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals," Numer. Math., Vol. 2, 84-196, 1996.
10. Mishra, M., N. Gupta, A. Dubey, and S. Shekhar, "Application of quasi Monte Carlo integartion technique in efficient capacitance computation," Progress In Electromagnetics Research, Vol. 90, 309-322, 2009.
doi:10.2528/PIER09011310