Vol. 16
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-07
Dual Integral Equations Technique in Electromagnetic Wave Scattering by a Thin Disk
By
Progress In Electromagnetics Research B, Vol. 16, 107-126, 2009
Abstract
The scattering of an arbitrary electromagnetic wave by a thin disk located in free space is formulated rigorously in terms of coupled dual integral equations (CDIEs) for the unknown images of the jumps and average values of the normal to the disk scattered-field components. Considered are three cases of the disk: (1) zero-thickness perfectly electrically conducting (PEC) disk, (2) thin electrically resistive (ER) disk and (3) dielectric disk. Disk thickness is assumed much smaller than the disk radius and the free space wavelength, in ER and dielectric disk cases, and also much smaller than the skin-layer depth, in the ER disk case. The set of CDIEs are "decoupled" by introduction of the coupling constants. Each set of DIEs are reduced to a Fredholm second kind integral equation by using the semi-inversion of DIE integral operators. The set of "coupling" equations for finding the coupling constants is obtained additionally from the edge behavior condition. Thus, each problem is reduced to a set of coupled Fredholm second kind integral equations. It is shown that each set can be reduced to a block-type three-diagonal matrix equation, which can be effectively solved numerically by iterative inversions of the two diagonal blocks and 2×2 matrix.
Citation
Mikhail V. Balaban, Ronan Sauleau, Trevor Mark Benson, and Alexander I. Nosich, "Dual Integral Equations Technique in Electromagnetic Wave Scattering by a Thin Disk," Progress In Electromagnetics Research B, Vol. 16, 107-126, 2009.
doi:10.2528/PIERB09050701
References

1. Chew, W. C. and J. A. Kong, "Resonance of axial symmetric modes in microstrip disk resonators," J. Math. Phys., Vol. 21, No. 3, 582, 1980.
doi:10.1063/1.524457

2. Chew, W. C. and J. A. Kong, "Analysis of a circular microstrip disk antenna with a thick dielectric substrate," IEEE Trans. Antennas Propag., Vol. 29, 68-76, 2005.

3. Bliznyuk, N. Y. and A. I. Nosich, "Numerical analysis of a lossy circular microstrip antenna," Radio Physics and Electronics, Vol. 4, No. 3, 125-128, Kharkov IRE Press, 1999. Translated to English in Telecommunications and Radio Engineering, Vol. 55, No. 8, 15--23, Begell House Publ., 2001.

4. Ulaby, F. T., K. Sarabandi, K. McDonald, M. Whitt, and M. Craig, "Michigan microwave canopy scattering model," International Journal of Remote Sensing, Vol. 11, 1223-1253, 1990.
doi:10.1080/01431169008955090

5. Frateschi, N. C. and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett., Vol. 66, No. 22, 2932-2934, 1995.
doi:10.1063/1.114233

6. Liu, X., W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, "Optically pumped ultraviolet microdisk laser on a silicon substrate," Appl. Phys. Lett., Vol. 84, No. 14, 2488-2490, 2004.
doi:10.1063/1.1695090

7. Nosich, A. I., E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, "Trends in microdisk laser research and linear optical modeling," Optical and Quantum Electronics, Vol. 39, No. 15, 1253-1272, 2007.
doi:10.1007/s11082-008-9203-z

8. Boriskin, A. V., A. Rolland, R. Sauleau, and A. I. Nosich, "Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis," IEEE Trans. Antennas Propag., Vol. 56, 758-764, 2008.
doi:10.1109/TAP.2008.916950

9. Tranter, C. J., "A further note on dual integral equations and an application to the diffraction of electromagnetic waves," Quart J. Mech. and Appl. Math., Vol. 7, No. 3, 317-325, 1954.
doi:10.1093/qjmam/7.3.317

10. Lugovoy, A. V. and V. G. Sologub, "Scattering of electromagnetic waves by a disk placed over lossy dielectric halfspace," URSI-B Symp. Electromagnetic Theory, 198-200, 1974.

11. Nosich, A. I., "The MAR in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propagat. Magazine, Vol. 41, No. 3, 25-49, 1999.

12. Nosich, A. I., "Method of analytical regularization based on the static part inversion in wave scattering by imperfect thin screens," J. Telecommunications and Information Technology, No. 3, 72-79, NIT Press, Warsaw, 2001.

13. Panariello, G., F. Schettino, L. Verolino, R. Araneo, and S. Celozzi, "Analysis of microstrip antennas by means of regularization via Neumann series," Review of Radio Science, W. Ross Stone (ed.), 2002.

14. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane ," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

15. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Surface-integral equations for electrmagnetic scattering from impenetrable and penetrable sheets," IEEE Antennas Propagat. Magazine, Vol. 35, 14-24, 1993.
doi:10.1109/74.248480

16. Braver, I., P. Fridberg, K. Garb, and I. Yakover, "The behavior of the electromagnetic field near the edge of a resistive half-plane," IEEE Trans. Antennas Propag., Vol. 36, 1760-1768, 1988.
doi:10.1109/8.14398

17. Chew, W. C. and T. B. Habashy, "The use of vector transforms in solving some electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 1, July 1986.

18. Ali, S. M., W. C. Chew, and J. A. Kong, "Vector Hankel transform analysis of annular-ring microstrip antenna," IEEE Trans. Antennas Propag., Vol. 30, No. 4, 637-644, July 1982.
doi:10.1109/TAP.1982.1142870

19. Khizhnyak, A. N., "Diffraction of a plane wave by a thin disk," Sov. Physics Acoustics, Vol. 35, No. 5, 539-541, 1989.

20. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axysimmetrically excited by an electric dipole," Microwave and Optical Technology Lett., Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D

21. Mandal, B. N. and N. Mandal, "Advances in dual integral equations," Research Notes in Mathematics, Chapman & Hall-CRC, New York, 1999.

22. Cooke, J. C., "A solution of Transfer's dual integral equations problem," Quart J. Mech. and Appl. Math., Vol. 9, No. 1, 103-110, 1956.
doi:10.1093/qjmam/9.1.103