Vol. 15
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-13
Using a Re-Entrant Microwave Resonator to Measure and Model the Dielectric Breakdown Electric Field of Gases
By
Progress In Electromagnetics Research B, Vol. 15, 175-195, 2009
Abstract
A gas will breakdown in a high electric field and the mechanisms of this breakdown at DC and high frequency fields have been an object of study for the past century. This paper describes a method to induce breakdown in a uniform microwave field using a reentrant sub-quarter wave resonator. Slater's theorem is used to determine the magnitude of the threshold electric field at which breakdown occurs. The breakdown threshold is modeled using the effective electric field concept, showing that breakdown varies with pressure as Ebd=CPm (1+(ω/ B·P)2)1/2 where P is the pressure, B and C are fit parameters, and m was found experimentally to equal 1/2. This function exhibits a minimum at Pmin=ω/B. Breakdown data from the literature for nitrogen at various microwave frequencies were found to exhibit breakdown minima at the pressure predicted by our own determination of B, further validating the model.
Citation
Stephen K. Remillard, Alejandro Hardaway, B. Mork, Jake Gilliland, and Joseph Gibbs, "Using a Re-Entrant Microwave Resonator to Measure and Model the Dielectric Breakdown Electric Field of Gases," Progress In Electromagnetics Research B, Vol. 15, 175-195, 2009.
doi:10.2528/PIERB09041706
References

1. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Chapter 15, Artech House, 1980.

2. Anderson, D., U. Jordan, M. Lisak, T. Olsson, and M. Alander, "Microwave breakdown in resonators and filters," IEEE Trans. Microwave Theory and Techniques, Vol. 47, No. 12, 2547-2556, December December 1999.
doi:10.1109/22.809005

3. Porteanu, H.-E., S. Kuhn, and R. Gesche, "Low-power microwave plasma conductivity," IEEE Trans. Plasma Sci., Vol. 37, No. 1, 44-49, January January 2009.
doi:10.1109/TPS.2008.2005833

4. Kuo, S. P., "Basis of ionospheric modification by high-frequency waves," Progress In Electromagnetics Research, Vol. 73, 277-296, 2007.
doi:10.2528/PIER07041002

5. Gurevich, A. V., N. D. Borisov, S. M. Geisse, and P. Hartogs, "Artificial ozone layer," Phys. Lett., Vol. 207, 281-288, 1995.

6. McColl, W., C. Brooks, and M. L. Brake, "Electron density and collision frequency of microwave-resonant-cavity-produced discharges," J. Appl. Phys., Vol. 74, No. 6, 3724-3735, Septembe September 15, 1993.
doi:10.1063/1.354519

7. Atkins, P., Physical Chemistry, 5th Ed., W. H. Freeman & Co., 1994.

8. Sato, M., "Interpretation of argon breakdown in dc and microwave fields," Bull. Yamagata Univ. (Eng.), Vol. 25, No. 2, 119-125, 1999.

9. Margenau, H., "Conduction and dispersion of ionized gases at high frequencies," Phys. Rev., Vol. 69, No. 9-10, 508-513, 1946.
doi:10.1103/PhysRev.69.508

10. MacDonald, A. D., Microwave Breakdown in Gases, Wiley, 1966.

11. Radmilovic-Radjenovic, M., J. K. Lee, F. Iza, and G. Y. Park, "Particle-in-call simulation of gas breakdown in microgaps," J. Phys. D: Appl. Phys., Vol. 38, 950-954, 2005.
doi:10.1088/0022-3727/38/6/027

12. Paschen, F., "Über die zum Funkenüergang in Luft, Wasserstoff und Kohlensäre bei verschiedenen Drucken erforderliche Potentialdifferenz," Annalen der Physik, Vol. 273, No. 5, 69-96, 1889 (reprinted in the March 16, 2006 German edition).
doi:10.1002/andp.18892730505

13. Miller, H. C., "Paschen curve in nitrogen," J. Appl. Phys., Vol. 34, 3418, 1963.
doi:10.1063/1.1729215

14. Gurevich, A. V., N. D. Borisov, and G. M. Milikh, Physics of Microwave Discharges: Artificially Ionized Regions in the Atmosphere, Grodon and Breach, 1997.

15. Gurevich, A. V., A. G. Litvak, A. L. Vikharev, O. A. Ivanov, N. D. Borisov, and K. F. Sergeĭchev, "Artificially ionized region as a source of ozone in the stratosphere," Physics-Uspekhi, Vol. 43, No. 11, 1103-1123, 2000.
doi:10.1070/PU2000v043n11ABEH000684

16. Fridman, A. and L. A. Kennedy, Plasma Physics and Engineering, Taylor and Francis Books, 2004.

17. Raizer, Y. P., Gas Discharge Physics, 143, Springer-Verlag, 1991.

18. Kelly, M. B. and A. J. Sangster, "Cylindrical re-entrant cavity resonator design using finite-element simulation," Microwave and Optical Technol. Lett., Vol. 18, No. 2, 112-117, June 5 June 5, 1998.
doi:10.1002/(SICI)1098-2760(19980605)18:2<112::AID-MOP8>3.0.CO;2-D

19. Rose, D. J. and S. C. Brown, "Methods of measuring the properties of ionized gases at high frequencies. 2. measurement of electric fields," J. Appl. Phys., Vol. 23, No. 7, 719-722, 1952.
doi:10.1063/1.1702288

20. Remillard, S. K., P. O. Radzikowski, S. Cordone, D. S. Applegate, A. Mehrotra, J. D. Kokales, and A. Abdelmonem, "A closed slot-line resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, 234-236, 2004.
doi:10.1109/LMWC.2004.827910

21. Maier, Jr., L. C. and J. C. Slater, "Field strength measurements in resonant cavities," J. Appl. Phys., Vol. 23, No. 1, 68-77, 1952.
doi:10.1063/1.1701980

22. Hutcheon, R., M. de Jong, and F. Adams, "A system for rapid measurements of RF and microwave properties up to 1400°C, Part 1: Theoretical development of the cavity frequency-shift data analysis equations," J. Microwave Power and Electromag. Energy, Vol. 27, No. 2, 87-92, 1992.

23. Rose, D. J. and S. C. Brown, "Microwave gas discharge breakdown in air, nitrogen, and oxygen," J. Appl. Phys., Vol. 28, No. 5, 561-563, 1957.
doi:10.1063/1.1722803

24. Herlin, M. A. and S. C. Brown, "Breakdown of a gas at microwave frequencies," Phys. Rev., Vol. 74, No. 3, 291-296, 1948.
doi:10.1103/PhysRev.74.291