Vol. 8
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-29
Repeaterless Hybrid CATV/16-Qam OFDM Transport Systems
By
Progress In Electromagnetics Research Letters, Vol. 8, 171-179, 2009
Abstract
A repeaterless hybrid CATV/16-quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) transport system employing half-split-band and remote light injection techniques is proposed and demonstrated. Over an 80-km SMF transmission without optical amplification, good performances of carrier-to-noise ratio (CNR), composite second order (CSO), and composite triple beat (CTB) were obtained for CATV band; simultaneous high CNR and low bit error rate (BER) values were achieved for 16-QAM OFDM band. This architecture presents a feasible way to transmit both analog and digital video signals.
Citation
Ching-Hung Chang, Tan-Hsu Tan, Hai-Han Lu, Wen-Yi Lin, and Shah-Jye Tzeng, "Repeaterless Hybrid CATV/16-Qam OFDM Transport Systems," Progress In Electromagnetics Research Letters, Vol. 8, 171-179, 2009.
doi:10.2528/PIERL09033107
References

1. Tzeng, S. J., H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, "CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site ," Progress In Electromagnetics Research Letters, Vol. 6, 107-113, 2009.
doi:10.2528/PIERL08123103

2. Gebretsadik, H., H. T. Foulk, N. C. Frateschi, W. J. Choi, S. V. Robertson, and A. E. Bond, "Linearised integrated SOAEA modulator for long-haul and FTTH CATV applications at 1.55 μm," Electron. Lett., Vol. 40, 1016-1017, 2004.
doi:10.1049/el:20045656

3. Lu, H. H., W. J. Wang, Y. C. Lai, and N. Y. Lin, "Hybrid AMVSB/256-QAM/Internet transport systems in the campus," IEEE Trans. Broadcast., Vol. 49, 103-106, 2003.
doi:10.1109/TBC.2003.808736

4. Lu, H. H. and W. S. Tasi, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast., Vol. 49, 97-102, 2003.
doi:10.1109/TBC.2003.808734

5. Lu, H. H., C. Y. Li, C. H. Lee, Y. C. Hsiao, and H. W. Chen, "Radio-over-fiber transport systems based on DFB LD with main and -1 side modes injection-locked techniques," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604

6. Chen, Y. K., Y. L. Liu, and C. C. Lee, "Directly modulated 1.55 μm AM-VSB video EDFA-repeated supertrunking system over 110 km standard singlemode fiber using split-band and wavelength division multiplexing technique ," Electron. Lett., Vol. 33, 1400-1401, 1997.
doi:10.1049/el:19970949

7. Chang, C. H., L. Chrostowski, C. J. C.-Hasnain, and W.W. Chow, "Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission," IEEE Photon. Technol. Lett. , Vol. 14, 1635-1637, 2002.
doi:10.1109/LPT.2002.803903

8. Sung, H. K., E. K. Lau, and M. C. Wu, "Optical single sideband modulation using strong optical injection-locked semiconductor lasers," IEEE Photon. Technol. Lett., Vol. 19, 1005-1007, 2007.
doi:10.1109/LPT.2007.898760

9. Ryu, H. S., Y. K. Seo, and W. Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett., Vol. 16, 1942-1944, 2004.
doi:10.1109/LPT.2004.829767

10. Mogensen, F., H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron., Vol. 21, 784-793, 1985.
doi:10.1109/JQE.1985.1072760

11. Way, W. I., Broadband Hybrid Fiber/Coax Access System Technologies, No. 6, 160-214, Academic Press, 1999.

12. Cox, C. H., Analog Optical Links Theory and Practice, Vol. 6, 201-261, Cambridge University Press, 2004.

13. Smith, G. H. and D. Novak, "Broad-band millimeter-wave (38GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects," IEEE Photon. Technol. Lett., Vol. 10, 141-143, 1998.
doi:10.1109/68.651139