Vol. 8
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-28
Simulation Results on a New Non Symmetrical Coplanar Isolator Structure Using Magnetic Thin Film
By
Progress In Electromagnetics Research Letters, Vol. 8, 161-170, 2009
Abstract
The non reciprocal effect of such devices as microstrip and coplanar isolators can be based on the field displacement phenomenon induced by a magnetized ferrite material. The structure under study is made from a ferrite thin-film deposited on a alumina substrate. A non symmetrical coplanar line is put on the ferrite film and the absorber is made from either a graphite film or a Tantalum Nitride film or a copper slab. In order to work in millimeter wave range the barium ferrite was selected. Moreover, the size of the component could be less than the circulator one. The small size and simple shape are the principal advantages of a coplanar isolator structure.
Citation
Souad Kirouane, Eric Verney, Didier Vincent, and Abdelhafid Chaabi, "Simulation Results on a New Non Symmetrical Coplanar Isolator Structure Using Magnetic Thin Film," Progress In Electromagnetics Research Letters, Vol. 8, 161-170, 2009.
doi:10.2528/PIERL09033103
References

1. Capraro, S., T. Rouiller, M. Le Berre, J. P. Chatelon, B. Bayard, D. Barbier, and J. J. Rousseau, "Feasability of a self biased coplanar isolator with barium ferrite films," IEEE Transactions on Components and Packaging Technologie, Vol. 3, No. 3, 411-415, September 2007.
doi:10.1109/TCAPT.2007.898747

2. Capraro, S., T. Rouiller, M. Le Berre, J. P. Chatelon, B. Bayard, D. Barbier, and J. J. Rousseau, "Exploration of the integration of passive coplanar isolator based on thin magnetic films," Microwave and Optical Technology Letters, Vol. 46, No. 5, 435-437, September 2005.
doi:10.1002/mop.21009

3. Zuo, X. and C. Vittoria, "Self-biased circulator/isolator at millimeter wavelengths using magnetically oriented polycrystalline strontium M-type hexaferrite ," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 5, 3160-3162, September 2003.

4. Pardavi-Horvath, M., "Microwave applications of soft ferrites," Journal of Magnetism and Magnetic Materials, Vol. 215–216, 171-183, June 2000.
doi:10.1016/S0304-8853(00)00106-2

5. Courtois, L. and M. De Vecchis, "A new class of nonreciprocal components using slotlines," IEEE Trans. Microwave Theory Tech., 511-516, June 1975.
doi:10.1109/TMTT.1975.1128612

6. Hines, M. E., "Reciprocal and nonreciprocal modes of propagation in ferrite stripline and microstrip devices," IEEE Trans. Microwave Theory Tech., Vol. 19, No. 5, 442-451, 1971.
doi:10.1109/TMTT.1971.1127545

7. Wen, C. P., "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application," IEEE Trans. Microwave Theory Tech., Vol. 17, No. 12, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

8. Hanna, V. F. and D. Thebault, "Theoretical and experiment investigation of asymmetric coplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 12, 1649-1651, December 1984.
doi:10.1109/TMTT.1984.1132906

9. Heinrich, W., "Quasi-TEM description of MMIC coplanar lines including conductor-loss effects," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 1, 45-52, January .
doi:10.1109/22.210228

10. Stancil, D., Theory of Magnetostatic Waves, 101-107, Springer, 1993.

11. Tsutsumi, M., K. Kikui, and T. Ueda, "Characteristics of slot line with yttrium iron garnet substrate and its application," Proceedings of APMC 2001, 1219-1221, 2001.

12. Tao, H., Landy, C. Bingham, X. Zhong, R. Averitt, and W. Padilla, "A metamaterial absorber for tera-hertz regime design, fabrication and characterization," Optical Society of America, Vol. 16, No. 10, 12, May 2008.