Vol. 93
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-06-03
A Breast Imaging Model Using Microwaves and a Time Domain Three Dimensional Reconstruction Method
By
Progress In Electromagnetics Research, Vol. 93, 57-70, 2009
Abstract
An iterative reconstruction algorithm for three-dimensional (3-D) microwave tomography by using time-domain microwave data is applied to detect breast tumor. A numeric breast model with randomly distributed glandular tissues (random size and permittivity) with a tumor is designed for the calculation of synthetic microwave data. An "air phantom" consisting of a section of polyvinyl chloride (PVC) pipe filled with styrofoam and a thin glass cylinder is constructed for collecting microwave data in laboratory. The "breast" and "air phantom" are reconstructed. Reconstruction results show that the "tumor" in the breast is clearly reconstructed, and the glass cylinder is successfully reconstructed too.
Citation
Hui Zhou, Takashi Takenaka, Jessi Johnson, and Toshiyuki Tanaka, "A Breast Imaging Model Using Microwaves and a Time Domain Three Dimensional Reconstruction Method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001
References

1. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564

2. Guo, B., Y. Wang, J. Li, and P. Stoica, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

3. Takenaka, T., H. Zhou, and T. Tanaka, "Inverse scattering for a three-dimensional object in the time domain," J. Opt. Soc. Am. A, Vol. 20, No. 10, 1867-1874, 2003.
doi:10.1364/JOSAA.20.001867

4. Fear, E., J. Sill, and M. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

5. Li, D., P. Meaney, T. Raynolds, S. Pendergrass, M. Fanning, and K. Paulsen, "Parallel-detection microwave spectroscopy system for breast imaging," Review of Scientific Instruments, Vol. 75, No. 7, 2305-2313, 2004.
doi:10.1063/1.1764609

6. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008.

7. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

8. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Med. Imag., Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

9. Meaney, P., M. Fanning, T. Raynolds, C. Fox, Q. Fang, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

10. Poplack, S., T. Tosteson, W. Wells, B. Pogue, P. Meaney, et al. "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, No. 2, 350-359, 2007.
doi:10.1148/radiol.2432060286

11. Sill, J. and E. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330

12. Bond, E., X. Li, S. Hagness, and B. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., Vol. 51, No. 8, 1690-1705.
doi:10.1109/TAP.2003.815446

13. Li, X., S. Davis, S. Hagness, D. D. Van Weide, and B. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686

14. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

15. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Trans. Antennas and Propagat., Vol. 47, 783-791, 1999.
doi:10.1109/8.774131

16. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

17. Lazebnik, M., L. McCartney, D. Popovic, C. M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

18. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

19. Van Dongen Koen, W. A. and W. M. D. Wright, "A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles," The Journal of the Acoustical Society of America, Vol. 121, 1538-1549, 2007.
doi:10.1121/1.2431333

20. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects," IEEE Trans. Antennas and Propagat., Vol. 42, No. 5, 581-589, 1994.
doi:10.1109/8.299556

21. Lin, J. H. and W. C. Chew, "Solution of the three-dimensional electromagnetic inverse problem by the local shape function and the conjugate gradient fast Fourier transform methods," J. Opt. Soc. Am. A, Vol. 14, No. 11, 3037-3045, 1997.
doi:10.1364/JOSAA.14.003037

22. Semenov, S. Y., R. H. Svenson, A. E. Bulyshev, et al. "Three-dimensional microwave tomography: Experimental prototype of the system and vector Born reconstruction method," IEEE Transactions on Biomedical Engineering, Vol. 46, No. 8, 937-946, 1999.
doi:10.1109/10.775403

23. Abubakar, A., P. M. D. Van Berg, and B. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Trans. Electron., Vol. E83-C, 1864-1874, 2000.

24. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagat., Vol. 14, 302-307, 1966.

25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, Artech House, 2005.

26. Meaney, P., Q. Fang, and K. Paulsen, "Data collection strategies and their impact on 3-D microwave imaging of the breast," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 183-186, 2005.

27. Winters, D. W., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas and Propagat., Vol. 54, No. 11, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296

28. Williams, T., E. Fear, and D. Westwick, "Tissue sensing adaptive radar for breast cancer detection- investigations of an improved skin-sensing method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1308-1314, 2006.
doi:10.1109/TMTT.2006.871224

29. Winters, D., J. Shea, E. Madsen, G. Frank, B. Van Veen, and S. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028