Vol. 8
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-27
Brillouin Fiber Laser with Significantly Reduced Gain Medium Length Operating in L-Band Region
By
Progress In Electromagnetics Research Letters, Vol. 8, 143-149, 2009
Abstract
Brillouin fiber laser (BFL) is demonstrated using a piece of photonic crystal fiber (PCF) in conjunction with a Bismuth-based erbium-doped fiber (Bi-EDF) as the gain media with a simple ring resonator. The proposed BFL operates at wavelength of 1574.08 nm, which is 0.08 nm shifted from the Brillouin pump wavelength with a maximum peak power of 8 dBm. The BFL has a side mode suppression ratio and 3 dB bandwidth of approximately 23 dB and 0.02 nm respectively limited by the optical spectrum analyzer resolution. The BFL is also stable at room temperature and compact due to the use of only 20 m long of PCF and 215 cm long of Bi-EDF.
Citation
Sharife Shahi, Sulaiman Wadi Harun, Kaharudin Dimyati, and Harith Ahmad, "Brillouin Fiber Laser with Significantly Reduced Gain Medium Length Operating in L-Band Region," Progress In Electromagnetics Research Letters, Vol. 8, 143-149, 2009.
doi:10.2528/PIERL09032501
References

1. Agrawal, G. P., Nonlinear Fiber Optics, 2nd Ed., 370-403, Academic, 1995.

2. Chraplyvy, A. R., "Limitations in lightwave communications imposed by optical-fiber nonlinearities," J. Lightwave Technol., Vol. 10, 1548-1557, 1990.
doi:10.1109/50.59195

3. Rich, T. C. and D. A. Pinnow, "Evaluation of fiber optical waveguides using Brillouin spectroscopy," Appl. Opt., Vol. 13, 1376-1378, 1974.
doi:10.1364/AO.13.001376

4. Tateda, M., T. Horiguchi, T. Kurashima, and K. Ishihara, "First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy," J. Lightwave Technol., Vol. 8, 1269-1272, 1990.
doi:10.1109/50.59150

5. Kurashima, T., T. Horiguchi, and M. Tateda, "Distributed temperature sensing using stimulated Brillouin scattering in optical silica fibers," Opt. Lett., Vol. 15, 1038-1040, 1990.
doi:10.1364/OL.15.001038

6. Ferreira, M. F., J. F. Rocha, and J. L. Pinto, "Analysis of the gain and noise characteristics of fiber Brillouin amplifiers," Opt. Quantum Electron., Vol. 26, 34-44, 1994.
doi:10.1007/BF00573899

7. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202

8. Smith, S. P., F. Zarinetchi, and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt. Lett., Vol. 16, 393-395, 1991.
doi:10.1364/OL.16.000393

9. Zarinetchi, F., S. P. Smith, and S. Ezekiel, "Stimulated Brillouin fiberoptic laser gyroscope," Opt. Lett., Vol. 16, 229-231, 1991.
doi:10.1364/OL.16.000229

10. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonics Crystal Fibres, Kluwer Academic Publishers, 2003.

11. Lee, J. H., Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "Investigation of Brillouin effects in small-core holey optical fiber: Lasing and scattering," Opt. Lett., Vol. 27, 927-929, 2002.
doi:10.1364/OL.27.000927

12. Yang, X., X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, "Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber," IEEE Photonics Technol. Lett., Vol. 17, 2538-2540, 2005.
doi:10.1109/LPT.2005.858076