Vol. 7
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-04-29
A Synthesis of Unequally Spaced Antenna Arrays Using Legendre Functions
By
Progress In Electromagnetics Research M, Vol. 7, 57-69, 2009
Abstract
In the wireless communication systems, the objective of using array antennas is to extract the desired signal while filtering out the unwanted interferences. New methods are developed for the optimization and synthesis, in terms of the directivity and the side lobe level. For the optimization of the array pattern, it is proposed to adjust both the excitation and the spacing of the antenna elements. The determination of the optimal excitation and spacing is shown to be a polynomial problem; this is described in terms of a unified mathematical approach to nonlinear optimization of multidimensional array geometries. The approach utilizes a class of limiting properties of Legendre functions that are dictated by the array geometry addressed. The objective of this paper is to describe a unified mathematical approach to nonlinear optimization of multidimensional array geometries.
Citation
Jorge Sanchez, David H. Covarrubias-Rosales, and Marco A. Panduro, "A Synthesis of Unequally Spaced Antenna Arrays Using Legendre Functions," Progress In Electromagnetics Research M, Vol. 7, 57-69, 2009.
doi:10.2528/PIERM09032305
References

1. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 2005.

2. Milligan, T. A., Modern Antenna Design, John Wiley & Sons, 2005.
doi:10.1002/0471720615

3. Unz, H., "Linear arrays with arbitrary distributed elements," IEEE Trans. Antennas Propag., Vol. 8, No. 2, 222-223, Mar. 1960.
doi:10.1109/TAP.1960.1144829

4. Skolnik, M. I., G. Nemhauser, and J. W. Sherman, "Dynamic programming applied to unequally spaced arrays," IIEEE Trans. Antennas Propag., Vol. 12, 35-43, Jan. 1964.
doi:10.1109/TAP.1964.1138163

5. Panduro, M. A., D. H. Covarrubias, C. A. Brizuela, and F. R. Marante, "A multi-objective approach in the linear antenna array design," Int. J. Electron. Commun (AEU), Vol. 59, 205-212, Jun. 2005.

6. Rocha, C., D. H. Covarrubias, C. A. Brizuela, and M. A. Panduro, "Differential evolution algorithm applied to sidelobe level reduction on a planar array," Int. J. Electron. Commun (AEU), Vol. 61, 286-290, 2006.

7. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Trans. Antennas Propag., Vol. 47, No. 3, 511-523, Mar. 1999.
doi:10.1109/8.768787

8. Kumar, B. P. and G. R. Branner, "Generalized analytical technique for the synthesis of unequally spaced arrays with linear planar, cylindrical or spherical geometry," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 621-634, Feb. 2005.
doi:10.1109/TAP.2004.841324

9. Mangulis, V., Handbook of Series for Scientists and Engineers, Vol. Part. III, 129, Academic, 1965.