Vol. 8
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-16
Scattering by an Impedance Half-Plane: Comparison of the Solutions of Raman/Krishnan and Maliuzhinets/Senior
By
Progress In Electromagnetics Research M, Vol. 8, 39-50, 2009
Abstract
There are three approaches for the solution of the diffraction problem of plane waves by an impedance half-plane in the literature. The diffracted field expressions, obtained by the related methods, are compared numerically. The examination of the scattered field shows that the most reliable solution is the field representation of Raman and Krishnan. Since the diffracted fields of Senior and Maliuzhinets do not compensate the discontinuities of the geometrical optics waves at the transition regions.
Citation
Yusuf Ziya Umul, "Scattering by an Impedance Half-Plane: Comparison of the Solutions of Raman/Krishnan and Maliuzhinets/Senior," Progress In Electromagnetics Research M, Vol. 8, 39-50, 2009.
doi:10.2528/PIERM09031803
References

1. Sommerfeld, A., "Mathematische theorie der diffraction," Math. Ann., Vol. 47, No. 2-3, 317-374, 1896.
doi:10.1007/BF01447273

2. Carslaw, H. S., "Diffraction of waves by a wedge of any angle," Proc. Lond. Math. Soc., Vol. 18, No. 2, 291-306, 1920.
doi:10.1112/plms/s2-18.1.291

3. Raman, C. V. and H. S. Krishnan, "The diffraction of light by metallic screens," Proc. R. Soc. Lond. A, Vol. 116, 254-267, 1927.

4. Senior, T. B. A., "Diffraction by a semi-infinite metallic sheet," Proc. R. Soc. Lond. A, Vol. 213, 436-458, 1952.

5. Maliuzhinets, G. D., "Das sommerfeldsche integral und die lösung von beugungsaufgaben in winkelgebieten," Ann. Phys. (Leipzig), Vol. 461, No. 1--2, 107-112, 1960.

6. Umul, Y. Z., "Modified theory of physical optics solution of impedance half plane problem," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2048-2053, 2006.
doi:10.1109/TAP.2006.877176

7. Umul, Y. Z., "Closed form series solution of the diffraction problem of plane waves by an impedance half-plane," J. Opt. A: Pure Appl. Opt., Vol. 11, No. 4, 045709-045716, 2009.
doi:10.1088/1464-4258/11/4/045709

8. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE, 1995.

9. Umul, Y. Z., "Uniform theory for the diffraction of evanescent plane waves," J. Opt. Soc. Am. A, Vol. 24, No. 8, 2426-2430, 2007.
doi:10.1364/JOSAA.24.002426

10. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of di®raction for an edge in a perfectly conducting screen," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651