1. Nyfors, E. G. and P. Vainikainen, Industrial Microwave Sensors, Artech House, Inc., Norwood, MA, 1989.
2. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, JohnWiley & Sons, West Sussex, England, 2004.
3. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, et al. "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702
4. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701
5. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., New York, NY, 2005.
6. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506
7. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 51, 1560-1566, 2003.
doi:10.1109/TMTT.2003.810139
8. Courtney, C. C. and W. Motil, "One-port time-domain measurement of the approximate permittivity and permeability of materials," IEEE Trans. Microw. Theory Tech., Vol. 47, 551-555, 1999.
doi:10.1109/22.763154
9. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382
10. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932
11. Packard, H., "Measuring dielectric constant of solids with the HP 8510 network analyzer,", Product Note 8510-3, 1985.
12. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336
13. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", NIST, Boulder, CO, Tech. Note 1355, 1992.
doi:10.1109/22.57336
14. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Trans. Instrum. Meas., Vol. 48, 1141-1148, 1999.
doi:10.1109/19.816128
15. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, PIER 42, 131-142, 2003.
16. Folgero, K., "Broad-band dielectric spectroscopy of lowpermittivity fluids using one measurement cell," IEEE Trans. Instrum. Meas., Vol. 47, 881-885, 1998.
doi:10.1109/19.744637
17. Qaddoumi, N., S. Ganchev, and R. Zoughi, "Microwave diagnosis of low density glass fibers with resin binder," Res. Nondestruc. Eval., Vol. 8, 177-188, 1996.
18. Hasar, U. C., "Calibration-independent method for complex permittivity determination of liquid and granular materials," Electron. Lett., Vol. 44, 585-587, 2008.
doi:10.1049/el:20080242
19. Baker-Jarvis, J., M. D. Janezic, and C. A. Jones, "Shielded opencircuited sample holder for dielectric measurements of solids and liquids," IEEE Trans. Instrum. Meas., Vol. 47, 338-344, 1998.
doi:10.1109/19.744172
20. Vanzura, E. J., J. Baker-Jarvis, J. H. Grosvenor, and M. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 42, 2063-2070, 1994.
doi:10.1109/22.330120
21. Mattar, K. E., D. G. Watters, and M. E. Brodwin, "Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies," IEEE Trans. Microw. Theory Tech., Vol. 39, 532-537, 1991.
doi:10.1109/22.75297
22. Somlo, P. I., "A convenient self-checking method for the automated microwave measurement of μ and ε," IEEE Trans. Instrum. Meas., Vol. 42, 213-216, 1993.
doi:10.1109/19.278551
23. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304
24. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706
25. Hasar, U. C., "A fast and accurate amplitude-only transmissionreflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229
26. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242
27. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, PIER 91, 123-183, 2009.
28. Buyukozturk, O., T. Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004
29. Ebara, H., T. Inoue, and O. Hashimoto, "Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band," Sci. Technol. Adv. Mat., Vol. 7, 77-83, 2006.
doi:10.1016/j.stam.2005.11.019
30. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992.
31. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
32. Deshpande, M. D., C. J. Reddy, P. I. Tiemsin, and R. Cravey, "A new approach to estimate complex permittivity of dielectric materials at microwave frequencies using waveguide measurements," IEEE Trans. Microw. Theory Tech., Vol. 45, 359-365, 1997.
doi:10.1109/22.563334
33. Nishikata, A., "A swept-frequency measurement of complex permittivity and complex permeability of a columnar specimen inserted in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 55, 1554-1567, 2007.
doi:10.1109/TMTT.2007.900340
34. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501
35. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402
36. Hasar, U. C. and O. Simsek, "A simple approach for evaluating the reciprocity of materials without using any calibration standard," Progress In Electromagnetics Research, PIER 91, 139-152, 2009.
37. Engen, G. F. and C. A. Hoer, "'Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Microw. Theory and Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778
38. Hasted, J. B., Aqueous Dielectrics, Chapman and Hall, 1973.
39. Chin, G. Y. and E. A. Mechtly, "Properties of materials," Reference Data for Engineering: Radio, Electronics, Computer, and Communications, E. C. Jordan (ed.), 4-20–4-23, Howard W. Sams & Co., Indianapolis, IN, 1986.
40. Von Hippel, A. R., Dielectric Materials and Applications, 134-135, 310-332, John Wiley & Sons, 1954.